Impact of spaceflight on gene expression in cultured human mesenchymal stem/stromal cells.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-03-13 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0315285
Peng Huang, Bryan T Piatkowski, Yesesri Cherukuri, Yan W Asmann, Abba C Zubair
{"title":"Impact of spaceflight on gene expression in cultured human mesenchymal stem/stromal cells.","authors":"Peng Huang, Bryan T Piatkowski, Yesesri Cherukuri, Yan W Asmann, Abba C Zubair","doi":"10.1371/journal.pone.0315285","DOIUrl":null,"url":null,"abstract":"<p><p>With technological advancements, human's desire to explore space is growing and more people are staying longer at the international space station (ISS). The impact of microgravity on stem cells (SC) is not fully understood. We explored the impact of microgravity on gene expression profile of cultured mesenchymal stem/stromal cells (MSCs) at the ISS. We also evaluated how the new knowledge gained sheds light on our understanding of human physiology on Earth. Primary cultures of MSCs were expanded at the ISS for 1 or 2 weeks and mRNA was isolated from samples of the cultured cells. Gene expression profiles were determined and compared with samples from real-time ground control cultures. Differential gene expression, gene set enrichment analysis and determination of key genes were performed that revealed for the first time the existence of potential \"master regulators\" coordinating a systemic response to microgravity. Cyclin D1 (CCND1), a protein-coding gene that regulates cell cycle progression and CDK kinases, was identified as the most connected regulator at week 1. Further analysis showed the impacted genes from cultured MSCs significantly correlated with known gene pathways associated with cell division, chromosomal segregation and nuclear division, extracellular matrix structure and organization, muscle apoptosis and differentiation. This study exemplifies the utility of space research to advance our understanding of human physiology both on Earth and in space.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 3","pages":"e0315285"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0315285","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

With technological advancements, human's desire to explore space is growing and more people are staying longer at the international space station (ISS). The impact of microgravity on stem cells (SC) is not fully understood. We explored the impact of microgravity on gene expression profile of cultured mesenchymal stem/stromal cells (MSCs) at the ISS. We also evaluated how the new knowledge gained sheds light on our understanding of human physiology on Earth. Primary cultures of MSCs were expanded at the ISS for 1 or 2 weeks and mRNA was isolated from samples of the cultured cells. Gene expression profiles were determined and compared with samples from real-time ground control cultures. Differential gene expression, gene set enrichment analysis and determination of key genes were performed that revealed for the first time the existence of potential "master regulators" coordinating a systemic response to microgravity. Cyclin D1 (CCND1), a protein-coding gene that regulates cell cycle progression and CDK kinases, was identified as the most connected regulator at week 1. Further analysis showed the impacted genes from cultured MSCs significantly correlated with known gene pathways associated with cell division, chromosomal segregation and nuclear division, extracellular matrix structure and organization, muscle apoptosis and differentiation. This study exemplifies the utility of space research to advance our understanding of human physiology both on Earth and in space.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信