{"title":"<i>CmWOX2</i> modulates somatic embryogenesis in Chinese chestnut (<i>Castanea mollissima</i> Blume).","authors":"Zhilin Sun, Bing Liu, Yuzhen Tian, Xiaowei Li, Yuyuan Long, Qingrong Zhang, TingTing Xiao, Qingqin Cao","doi":"10.5511/plantbiotechnology.24.0527a","DOIUrl":null,"url":null,"abstract":"<p><p>Chinese chestnut (<i>Castanea mollissima</i> Blume) is distinguished by its remarkable nut quality and robustness against disease and environmental stressor. However, its somatic embryogenesis process is notably slow, presenting a significant bottleneck in its cultivation. This study focuses on the <i>WUSCHEL</i> (<i>WUS</i>)<i>-related homeobox 2 gene</i> (<i>WOX2</i>), a member of <i>WOX</i> transcription factors gene family, known for its critical role in the somatic embryo development of Arabidopsis. We have identified and explored the function of a <i>WOX2</i> homolog in Chinese chestnut, termed <i>CmWOX2</i>, in the context of somatic embryogenesis. Our analysis revealed seven <i>WUS</i> gene family members in the species, with <i>CmWOX2</i> being uniquely upregulated in callus. Our experiments demonstrated that suppression of <i>CmWOX2</i> expression diminishes somatic embryo production, whereas its overexpression enlarges the embryonic callus diameter. Notably, <i>CmWOX2</i> expression levels are threefold higher in varieties with high embryogenic competence, such as 'Jingshuhong' and 'Huaihuang', compared to those with lower competence, including 'Jiujiazhong' and 'Shandonghongli'. These findings underscored the pivotal role of <i>CmWOX2</i> in the initial stages of Chinese chestnut somatic embryogenesis, highlighting its potential as a target for enhancing somatic embryogenesis in this species.</p>","PeriodicalId":20411,"journal":{"name":"Plant Biotechnology","volume":"41 4","pages":"375-385"},"PeriodicalIF":1.4000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897729/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5511/plantbiotechnology.24.0527a","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chinese chestnut (Castanea mollissima Blume) is distinguished by its remarkable nut quality and robustness against disease and environmental stressor. However, its somatic embryogenesis process is notably slow, presenting a significant bottleneck in its cultivation. This study focuses on the WUSCHEL (WUS)-related homeobox 2 gene (WOX2), a member of WOX transcription factors gene family, known for its critical role in the somatic embryo development of Arabidopsis. We have identified and explored the function of a WOX2 homolog in Chinese chestnut, termed CmWOX2, in the context of somatic embryogenesis. Our analysis revealed seven WUS gene family members in the species, with CmWOX2 being uniquely upregulated in callus. Our experiments demonstrated that suppression of CmWOX2 expression diminishes somatic embryo production, whereas its overexpression enlarges the embryonic callus diameter. Notably, CmWOX2 expression levels are threefold higher in varieties with high embryogenic competence, such as 'Jingshuhong' and 'Huaihuang', compared to those with lower competence, including 'Jiujiazhong' and 'Shandonghongli'. These findings underscored the pivotal role of CmWOX2 in the initial stages of Chinese chestnut somatic embryogenesis, highlighting its potential as a target for enhancing somatic embryogenesis in this species.
期刊介绍:
Plant Biotechnology is an international, open-access, and online journal, published every three months by the Japanese Society for Plant Biotechnology. The journal, first published in 1984 as the predecessor journal, “Plant Tissue Culture Letters” and became its present form in 1997 when the society name was renamed to Japanese Society for Plant Cell and Molecular Biology, publishes findings in the areas from basic- to application research of plant biotechnology. The aim of Plant Biotechnology is to publish original and high-impact papers, in the most rapid turnaround time for reviewing, on the plant biotechnology including tissue culture, production of specialized metabolites, transgenic technology, and genome editing technology, and also on the related research fields including molecular biology, cell biology, genetics, plant breeding, plant physiology and biochemistry, metabolic engineering, synthetic biology, and bioinformatics.