N6-methyladenosine RNA modified BAIAP2L2 facilitates extracellular vesicles-mediated chemoresistance transmission in gastric cancer.

IF 6.1 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Yuhan Liao, Xinhua Chen, Hao Xu, Yunfei Zhi, Xinghua Zhuo, Jiang Yu, Liang Zhao
{"title":"N6-methyladenosine RNA modified BAIAP2L2 facilitates extracellular vesicles-mediated chemoresistance transmission in gastric cancer.","authors":"Yuhan Liao, Xinhua Chen, Hao Xu, Yunfei Zhi, Xinghua Zhuo, Jiang Yu, Liang Zhao","doi":"10.1186/s12967-025-06340-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Extracellular vesicles (EVs) produced in the tumor microenvironment in response to chemotherapy promote chemotherapy-resistant phenotypes. However, the role of EVs proteins induced by gastric cancer (GC) cell chemotherapy in regulating chemotherapy resistance remains unclear.</p><p><strong>Methods: </strong>Immunohistochemistry was used to verify the relationship between brain-specific angiogenesis inhibitor 1-associated protein-2-like protein 2 (BAIAP2L2) expression and chemotherapy resistance in advanced GC. The relationship between BAIAP2L2 and chemotherapy resistance was verified using a subcutaneous tumor model in nude mice. Transmission electron microscopy, nanoparticle tracking analysis, and western blotting were performed to detect purified EVs. Tandem mass tag (TMT) analysis was used to detect differential labels. The interaction between YTH domain-containing family protein1 (YTHDF1) and BAIAP2L2 in GC cells was confirmed by RIP-qPCR analysis using a YTHDF1-specific antibody.</p><p><strong>Results: </strong>We found that BAIAP2L2 was associated with chemotherapy resistance to GC in clinical samples and was increased in chemotherapy-resistant GC cells. Mechanistically, BAIAP2L2 promotes the transfer of chemotherapy resistance from resistant GC cells to sensitive cells through EVs proteins, such as ANXA4. Furthermore, ANXA4 promoted platinum-based chemical resistance in GC by mediating autophagy. Interestingly, YTHDF1 facilitates the translation of BAIAP2L2 and ANXA4 through m<sup>6</sup>A modifications.</p><p><strong>Conclusions: </strong>Our findings reveal the key role of BAIAP2L2 as a potential prognostic marker and therapeutic target for chemotherapy resistance in GC.</p>","PeriodicalId":17458,"journal":{"name":"Journal of Translational Medicine","volume":"23 1","pages":"320"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11905699/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12967-025-06340-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Extracellular vesicles (EVs) produced in the tumor microenvironment in response to chemotherapy promote chemotherapy-resistant phenotypes. However, the role of EVs proteins induced by gastric cancer (GC) cell chemotherapy in regulating chemotherapy resistance remains unclear.

Methods: Immunohistochemistry was used to verify the relationship between brain-specific angiogenesis inhibitor 1-associated protein-2-like protein 2 (BAIAP2L2) expression and chemotherapy resistance in advanced GC. The relationship between BAIAP2L2 and chemotherapy resistance was verified using a subcutaneous tumor model in nude mice. Transmission electron microscopy, nanoparticle tracking analysis, and western blotting were performed to detect purified EVs. Tandem mass tag (TMT) analysis was used to detect differential labels. The interaction between YTH domain-containing family protein1 (YTHDF1) and BAIAP2L2 in GC cells was confirmed by RIP-qPCR analysis using a YTHDF1-specific antibody.

Results: We found that BAIAP2L2 was associated with chemotherapy resistance to GC in clinical samples and was increased in chemotherapy-resistant GC cells. Mechanistically, BAIAP2L2 promotes the transfer of chemotherapy resistance from resistant GC cells to sensitive cells through EVs proteins, such as ANXA4. Furthermore, ANXA4 promoted platinum-based chemical resistance in GC by mediating autophagy. Interestingly, YTHDF1 facilitates the translation of BAIAP2L2 and ANXA4 through m6A modifications.

Conclusions: Our findings reveal the key role of BAIAP2L2 as a potential prognostic marker and therapeutic target for chemotherapy resistance in GC.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Translational Medicine
Journal of Translational Medicine 医学-医学:研究与实验
CiteScore
10.00
自引率
1.40%
发文量
537
审稿时长
1 months
期刊介绍: The Journal of Translational Medicine is an open-access journal that publishes articles focusing on information derived from human experimentation to enhance communication between basic and clinical science. It covers all areas of translational medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信