Study of the correlation between the anti-ischemic stroke mechanism of 4-hydroxybenzaldehyde and its response to reactive oxygen species in brain metabolism.

IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Jin Feng, Qian Yang, Ming Chen, Long Ning, Yan Wang, Dan Luo, Dongxiong Hu, Qing Lin, Fangyan He
{"title":"Study of the correlation between the anti-ischemic stroke mechanism of 4-hydroxybenzaldehyde and its response to reactive oxygen species in brain metabolism.","authors":"Jin Feng, Qian Yang, Ming Chen, Long Ning, Yan Wang, Dan Luo, Dongxiong Hu, Qing Lin, Fangyan He","doi":"10.1016/j.jpet.2025.103395","DOIUrl":null,"url":null,"abstract":"<p><p>The active ingredient of Gastrodia elata, 4-hydroxybenzaldehyde (4-HBd), can rapidly enter the brain and undergo massive oxidation to produce the metabolite 4-hydroxybenzoic acid, which has no significant activity after equal dose gavage. It is crucial to clarify the metabolic pathway of 4-HBd and its correlation with the anti-ischemic stroke mechanism. The objective of this study was to explore the possible mechanism of 4-HBd in clearing reactive oxygen species (ROS) and protecting blood-brain barrier from oxidative stress damage during brain metabolism from the perspective of ROS response. A rat model of cerebral ischemia-reperfusion injury and a cellular oxidative stress response model were replicated to simulate the accumulation process of ROS in the brain. The changes in ROS and peroxidation products before and after 4-HBd intervention were detected, and the changes in oxidative metabolism were also measured to confirm the correlation between antioxidant stress damage and ROS capture/clearance in oxidative metabolism. 4-HBd has significant antioxidant stress resistance both in vitro and in vivo, and can reduce the levels of malondialdehyde and 4-hydroxy-2-nonenal in ischemic brain tissue. It can capture O<sub>2</sub><sup>⋅-</sup> and ⋅OH in vitro and use the captured ROS to oxidize and metabolize 4-hydroxybenzoic acid. The oxidative metabolism process of 4-HBd in the brain is one of its mechanisms for exerting antioxidant stress damage and protecting blood-brain barrier. SIGNIFICANCE STATEMENT: The active ingredient 4-hydroxybenzaldehyde of Gastrodia elata can be converted into metabolite 4-hydroxybenzoic acid in the brain mainly through oxidative metabolic pathway. The mechanism of its action against oxidative stress damage of blood-brain barrier is related to the oxidative metabolic process in the brain that traps/clears reactive oxygen species and forms stable intermediates to terminate the free radical chain reaction. This is one of the main mechanisms of 4-hydroxybenzaldehyde's anti-ischemic stroke effect in the brain.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":"392 3","pages":"103395"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacology and Experimental Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jpet.2025.103395","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The active ingredient of Gastrodia elata, 4-hydroxybenzaldehyde (4-HBd), can rapidly enter the brain and undergo massive oxidation to produce the metabolite 4-hydroxybenzoic acid, which has no significant activity after equal dose gavage. It is crucial to clarify the metabolic pathway of 4-HBd and its correlation with the anti-ischemic stroke mechanism. The objective of this study was to explore the possible mechanism of 4-HBd in clearing reactive oxygen species (ROS) and protecting blood-brain barrier from oxidative stress damage during brain metabolism from the perspective of ROS response. A rat model of cerebral ischemia-reperfusion injury and a cellular oxidative stress response model were replicated to simulate the accumulation process of ROS in the brain. The changes in ROS and peroxidation products before and after 4-HBd intervention were detected, and the changes in oxidative metabolism were also measured to confirm the correlation between antioxidant stress damage and ROS capture/clearance in oxidative metabolism. 4-HBd has significant antioxidant stress resistance both in vitro and in vivo, and can reduce the levels of malondialdehyde and 4-hydroxy-2-nonenal in ischemic brain tissue. It can capture O2⋅- and ⋅OH in vitro and use the captured ROS to oxidize and metabolize 4-hydroxybenzoic acid. The oxidative metabolism process of 4-HBd in the brain is one of its mechanisms for exerting antioxidant stress damage and protecting blood-brain barrier. SIGNIFICANCE STATEMENT: The active ingredient 4-hydroxybenzaldehyde of Gastrodia elata can be converted into metabolite 4-hydroxybenzoic acid in the brain mainly through oxidative metabolic pathway. The mechanism of its action against oxidative stress damage of blood-brain barrier is related to the oxidative metabolic process in the brain that traps/clears reactive oxygen species and forms stable intermediates to terminate the free radical chain reaction. This is one of the main mechanisms of 4-hydroxybenzaldehyde's anti-ischemic stroke effect in the brain.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.90
自引率
0.00%
发文量
115
审稿时长
1 months
期刊介绍: A leading research journal in the field of pharmacology published since 1909, JPET provides broad coverage of all aspects of the interactions of chemicals with biological systems, including autonomic, behavioral, cardiovascular, cellular, clinical, developmental, gastrointestinal, immuno-, neuro-, pulmonary, and renal pharmacology, as well as analgesics, drug abuse, metabolism and disposition, chemotherapy, and toxicology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信