Prediction of high-Tcsuperconductivity in two corrugated graphene sheets with intercalated CeH9molecules.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
M A Rastkhadiv, M Pazoki
{"title":"Prediction of high-<i>T</i><sub>c</sub>superconductivity in two corrugated graphene sheets with intercalated CeH<sub>9</sub>molecules.","authors":"M A Rastkhadiv, M Pazoki","doi":"10.1088/1361-648X/adc061","DOIUrl":null,"url":null,"abstract":"<p><p>Recent discoveries involving high-temperature superconductivity in H<sub>3</sub>S and LaH<sub>10</sub>have sparked a renewed interest in exploring the potential for superconductivity within hydrides. These superconductors require extremely high-pressure condition (∼100GPa), rendering them virtually impractical for industrial applications. In this study, we verify the occurrence of a low pressure superconductivity phase transition in a system containing two graphene layers with sine form corrugations where CeH<sub>9</sub>doped molecules are intercalated between the layers. The lowest-order constrained variational method is applied to calculate the thermodynamic and electrical properties of the valence electrons. We examine 9900 different distributions of CeH<sub>9</sub>molecules separately for finding a second-order phase transition with maximized critical temperature. The novelty of the present work is the prediction of a superconductivity transition atTc=198.61 K for a specific distribution of CeH<sub>9</sub>molecules with applying no external pressure on the exterior surfaces of the graphene sheets. Notably, this critical temperature is approximately 65 K higher than that observed in cuprate materials (HgBa<sub>2</sub>Ca<sub>2</sub>Cu<sub>3</sub>O8+δ), which are known for their highTcvalues at room pressure. It is interesting that in this particular case, the distribution periodicity of CeH<sub>9</sub>molecules bears the closest resemblance to the periodicity of the graphene corrugations among all 9900 examined cases. Computing the energy gap of the valence electrons reveals that this critical behavior corresponds to an unconventional superconductivity phase transition exhibiting a high critical current density on the order of∼107A cm-2.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/adc061","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Recent discoveries involving high-temperature superconductivity in H3S and LaH10have sparked a renewed interest in exploring the potential for superconductivity within hydrides. These superconductors require extremely high-pressure condition (∼100GPa), rendering them virtually impractical for industrial applications. In this study, we verify the occurrence of a low pressure superconductivity phase transition in a system containing two graphene layers with sine form corrugations where CeH9doped molecules are intercalated between the layers. The lowest-order constrained variational method is applied to calculate the thermodynamic and electrical properties of the valence electrons. We examine 9900 different distributions of CeH9molecules separately for finding a second-order phase transition with maximized critical temperature. The novelty of the present work is the prediction of a superconductivity transition atTc=198.61 K for a specific distribution of CeH9molecules with applying no external pressure on the exterior surfaces of the graphene sheets. Notably, this critical temperature is approximately 65 K higher than that observed in cuprate materials (HgBa2Ca2Cu3O8+δ), which are known for their highTcvalues at room pressure. It is interesting that in this particular case, the distribution periodicity of CeH9molecules bears the closest resemblance to the periodicity of the graphene corrugations among all 9900 examined cases. Computing the energy gap of the valence electrons reveals that this critical behavior corresponds to an unconventional superconductivity phase transition exhibiting a high critical current density on the order of∼107A cm-2.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信