Approaches to tunnel magnetoresistance effect with antiferromagnets.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Katsuhiro Tanaka, Takuya Nomoto, Ryotaro Arita
{"title":"Approaches to tunnel magnetoresistance effect with antiferromagnets.","authors":"Katsuhiro Tanaka, Takuya Nomoto, Ryotaro Arita","doi":"10.1088/1361-648X/adc05e","DOIUrl":null,"url":null,"abstract":"<p><p>The tunnel magnetoresistance (TMR) effect is one of the representative phenomena in spintronics. Ferromagnets, which have a net spin polarization, have been utilized for the TMR effect. Recently, by contrast, the TMR effect with antiferromagnets, which do not possess a macroscopic spin polarization, has been proposed, and also been observed in experiments. In this topical review, we discuss recent developments in the TMR effect, particularly focusing on the TMR effect with antiferromagnets. First, we review how the TMR effect can occur in antiferromagnetic tunnel junctions. The Julliere model, which has been conventionally utilized to grasp the TMR effect with ferromagnets, breaks down for the antiferromagnetic TMR effect. Instead, we see that the momentum dependent spin splitting explains the antiferromagnetic TMR effect. After that, we revisit the TMR effect from viewpoint of the local density of states (LDOS). We particularly focus on the LDOS inside the barrier, and show that the product of the LDOS will qualitatively capture the TMR effect not only in the ferromagnetic tunnel junctions but also in the ferrimagnetic and antiferromagnetic tunnel junctions. This method is expected to work usefully for designing magnetic tunnel junctions.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/adc05e","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

The tunnel magnetoresistance (TMR) effect is one of the representative phenomena in spintronics. Ferromagnets, which have a net spin polarization, have been utilized for the TMR effect. Recently, by contrast, the TMR effect with antiferromagnets, which do not possess a macroscopic spin polarization, has been proposed, and also been observed in experiments. In this topical review, we discuss recent developments in the TMR effect, particularly focusing on the TMR effect with antiferromagnets. First, we review how the TMR effect can occur in antiferromagnetic tunnel junctions. The Julliere model, which has been conventionally utilized to grasp the TMR effect with ferromagnets, breaks down for the antiferromagnetic TMR effect. Instead, we see that the momentum dependent spin splitting explains the antiferromagnetic TMR effect. After that, we revisit the TMR effect from viewpoint of the local density of states (LDOS). We particularly focus on the LDOS inside the barrier, and show that the product of the LDOS will qualitatively capture the TMR effect not only in the ferromagnetic tunnel junctions but also in the ferrimagnetic and antiferromagnetic tunnel junctions. This method is expected to work usefully for designing magnetic tunnel junctions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信