Physicochemical characterization and 16S rRNA analysis of a direct-fed microbial from calf ruminal fluid and its protective effect on Sprague-Dawley rat gut barrier function.

IF 1.3 Q3 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Translational Animal Science Pub Date : 2025-01-09 eCollection Date: 2025-01-01 DOI:10.1093/tas/txaf003
Haiku D J Gómez-Velázquez, Laura González-Dávalos, Erika A de Los Ríos, Juan de Dios Figueroa-Cárdenas, Alma Vázquez-Durán, Abraham Méndez-Albores, Armando Shimada, Ofelia Mora
{"title":"Physicochemical characterization and 16S rRNA analysis of a direct-fed microbial from calf ruminal fluid and its protective effect on Sprague-Dawley rat gut barrier function.","authors":"Haiku D J Gómez-Velázquez, Laura González-Dávalos, Erika A de Los Ríos, Juan de Dios Figueroa-Cárdenas, Alma Vázquez-Durán, Abraham Méndez-Albores, Armando Shimada, Ofelia Mora","doi":"10.1093/tas/txaf003","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to characterize the physicochemical properties and microbiota composition of a direct-fed microbial (DFM) and evaluate its protective effect on intestinal permeability in Sprague-Dawley rats using fluorescein isothiocyanate dextran (FITC-d) as a biomarker. The DFM was further characterized using Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), environmental scanning electron microscopy (ESEM), energy-dispersive X-ray spectroscopy (EDS), and cell surface hydrophobicity (microbial adhesion to hexadecane [MATH] assay). The 16S rRNA gene was sequenced using short-read sequencing. In general, the DFM exhibited the characteristic FTIR bands associated with probiotic cells with a protein/carbohydrate ratio of 1.3:1. It was also found from the DLS analysis that the average particle size and surface electrical potential of the probiotic cells were 1,062 ± 77 nm and -32.6 ± 3.7 mV, respectively. ESEM studies confirmed the size of the cells (1,010 to 1,060 nm), showing a quasi-spherical cocci-type morphology, whereas EDS spectroscopy revealed a higher Nitrogen/Carbone ratio on the cell surface. Moreover, the MATH assay showed the hydrophobic character of the DFM (92% adhesion). Furthermore, based on the 16S rRNA gene analysis, the predominant genus in the DFM was <i>Streptococcus</i> (99%). Regarding the protective effect on the gut barrier, animals supplemented with 10<sup>11</sup> CFU/mL exhibited a significantly reduced intestinal permeability compared with the control group. DFM supplementation also increased villi and crypt dimensions and Goblet cells (<i>P </i>< 0.05) in the ileum and cecum. These results demonstrate that the DFM presented adequate surface and colloidal properties that help maintain the functionality of the gut barrier.</p>","PeriodicalId":23272,"journal":{"name":"Translational Animal Science","volume":"9 ","pages":"txaf003"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11905223/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Animal Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/tas/txaf003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to characterize the physicochemical properties and microbiota composition of a direct-fed microbial (DFM) and evaluate its protective effect on intestinal permeability in Sprague-Dawley rats using fluorescein isothiocyanate dextran (FITC-d) as a biomarker. The DFM was further characterized using Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), environmental scanning electron microscopy (ESEM), energy-dispersive X-ray spectroscopy (EDS), and cell surface hydrophobicity (microbial adhesion to hexadecane [MATH] assay). The 16S rRNA gene was sequenced using short-read sequencing. In general, the DFM exhibited the characteristic FTIR bands associated with probiotic cells with a protein/carbohydrate ratio of 1.3:1. It was also found from the DLS analysis that the average particle size and surface electrical potential of the probiotic cells were 1,062 ± 77 nm and -32.6 ± 3.7 mV, respectively. ESEM studies confirmed the size of the cells (1,010 to 1,060 nm), showing a quasi-spherical cocci-type morphology, whereas EDS spectroscopy revealed a higher Nitrogen/Carbone ratio on the cell surface. Moreover, the MATH assay showed the hydrophobic character of the DFM (92% adhesion). Furthermore, based on the 16S rRNA gene analysis, the predominant genus in the DFM was Streptococcus (99%). Regarding the protective effect on the gut barrier, animals supplemented with 1011 CFU/mL exhibited a significantly reduced intestinal permeability compared with the control group. DFM supplementation also increased villi and crypt dimensions and Goblet cells (P < 0.05) in the ileum and cecum. These results demonstrate that the DFM presented adequate surface and colloidal properties that help maintain the functionality of the gut barrier.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Translational Animal Science
Translational Animal Science Veterinary-Veterinary (all)
CiteScore
2.80
自引率
15.40%
发文量
149
审稿时长
8 weeks
期刊介绍: Translational Animal Science (TAS) is the first open access-open review animal science journal, encompassing a broad scope of research topics in animal science. TAS focuses on translating basic science to innovation, and validation of these innovations by various segments of the allied animal industry. Readers of TAS will typically represent education, industry, and government, including research, teaching, administration, extension, management, quality assurance, product development, and technical services. Those interested in TAS typically include animal breeders, economists, embryologists, engineers, food scientists, geneticists, microbiologists, nutritionists, veterinarians, physiologists, processors, public health professionals, and others with an interest in animal production and applied aspects of animal sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信