PgMYB96 enhances Physalis grisea high temperature tolerance by activating trithorax-like factor WD REPEAT CONTAINING5b.

IF 5.6 2区 生物学 Q1 PLANT SCIENCES
Guanzhuo Kong, Hong Li, Jintao Zheng, Yaru Zhao, Qiaofang Shi, Xiaochun Zhao, Yihe Yu
{"title":"PgMYB96 enhances Physalis grisea high temperature tolerance by activating trithorax-like factor WD REPEAT CONTAINING5b.","authors":"Guanzhuo Kong, Hong Li, Jintao Zheng, Yaru Zhao, Qiaofang Shi, Xiaochun Zhao, Yihe Yu","doi":"10.1093/jxb/eraf097","DOIUrl":null,"url":null,"abstract":"<p><p>Under the general trend of global warming, high temperature stress (HTS) is an increasingly grievous challenge to the normal growth and development of crops. Exposure to high temperature (42°C) during the growth and development stages of Physalis grisea can result in the breakdown of antimicrobials, sterility of pollen, and diminished yields. In this study, trithorax-like factor PgWDR5b was functionally analysed in response to high temperature stress in P. grisea. PgWDR5b expression was enhanced through treatments with HTS and abscisic acid (ABA), PgWDR5b promoted the level of expression of downstream ABA synthesis genes after HTS, and positively contributes to tolerance to high temperature stress in P. grisea. In addition, the transcription factor PgMYB96 binds the promoter of PgWDR5b. Silencing both PgWDR5b and PgMYB96 reduced the high temperature tolerance of the P. grisea, as well as the synthesis genes for ABA showed decreased expression while the catabolic genes had increased levels of expression. The results of overexpression assay were contrary. Furthermore, ABA directly activates PgWDR5b expression. These results collectively suggest that PgMYB96 can both regulate PgWDR5b expression by affecting ABA synthesis and directly activate PgWDR5b transcription. Hence, PgWDR5b can participate in the high temperature stress response of P. grisea through the metabolic pathway of ABA and establishes a positive feedback regulatory mechanism with ABA.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf097","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Under the general trend of global warming, high temperature stress (HTS) is an increasingly grievous challenge to the normal growth and development of crops. Exposure to high temperature (42°C) during the growth and development stages of Physalis grisea can result in the breakdown of antimicrobials, sterility of pollen, and diminished yields. In this study, trithorax-like factor PgWDR5b was functionally analysed in response to high temperature stress in P. grisea. PgWDR5b expression was enhanced through treatments with HTS and abscisic acid (ABA), PgWDR5b promoted the level of expression of downstream ABA synthesis genes after HTS, and positively contributes to tolerance to high temperature stress in P. grisea. In addition, the transcription factor PgMYB96 binds the promoter of PgWDR5b. Silencing both PgWDR5b and PgMYB96 reduced the high temperature tolerance of the P. grisea, as well as the synthesis genes for ABA showed decreased expression while the catabolic genes had increased levels of expression. The results of overexpression assay were contrary. Furthermore, ABA directly activates PgWDR5b expression. These results collectively suggest that PgMYB96 can both regulate PgWDR5b expression by affecting ABA synthesis and directly activate PgWDR5b transcription. Hence, PgWDR5b can participate in the high temperature stress response of P. grisea through the metabolic pathway of ABA and establishes a positive feedback regulatory mechanism with ABA.

PgMYB96通过激活含有5b的三胸样因子WD REPEAT增强稻瘟病菌的高温耐受性。
在全球变暖的大趋势下,高温胁迫对作物的正常生长发育构成了日益严峻的挑战。在稻瘟病Physalis grisea的生长发育阶段暴露在高温下(42°C)会导致抗菌剂的破坏、花粉不育和产量下降。本研究分析了稻瘟病菌三胸样因子PgWDR5b在高温胁迫下的功能。PgWDR5b通过高温胁迫和ABA处理增强了PgWDR5b的表达,PgWDR5b促进了高温胁迫后下游ABA合成基因的表达水平,对稻瘟病菌耐高温胁迫有积极作用。此外,转录因子PgMYB96结合PgWDR5b的启动子。PgWDR5b和PgMYB96的沉默降低了稻瘟病菌的高温耐受性,ABA合成基因表达量减少,而分解代谢基因表达量增加。过表达实验结果与此相反。此外,ABA直接激活PgWDR5b的表达。综上所述,PgMYB96既可以通过影响ABA合成调节PgWDR5b的表达,也可以直接激活PgWDR5b的转录。由此可见,PgWDR5b可通过ABA代谢途径参与稻瘟病菌的高温胁迫响应,并与ABA建立正反馈调控机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Experimental Botany
Journal of Experimental Botany 生物-植物科学
CiteScore
12.30
自引率
4.30%
发文量
450
审稿时长
1.9 months
期刊介绍: The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology. Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信