Hanane Etabti, Mohammed Er-Rajy, Asmae Fitri, Arunkumar Ammasi, Mohd Shkir, Adil Touimi Benjelloun, Mohammed Benzakour, Mohammed Mcharfi
{"title":"Computational Analysis of Triazolone-Based Dyes in DSSCs: Exploring Acceptor Terminal for Enhanced Photovoltaic Performance.","authors":"Hanane Etabti, Mohammed Er-Rajy, Asmae Fitri, Arunkumar Ammasi, Mohd Shkir, Adil Touimi Benjelloun, Mohammed Benzakour, Mohammed Mcharfi","doi":"10.1007/s10895-025-04231-z","DOIUrl":null,"url":null,"abstract":"<p><p>We designed and built several triazolone-based dyes (TPA1-TPA5 and PTZ1-PTZ5) by modifying the structure around At-D-π-A. We studied how different donating and accepting groups affect the shape, energy levels, absorption spectra and photovoltaic behavior of these sensitizers using DFT and TDDFT calculations. We used selected functional methods to optimize the ground state of these sensitizer molecules. Our quantum chemistry calculations revealed vital molecular properties such as absorption properties, HOMO-LUMO orbital configurations, energy differences, and chemical properties indicators. The light absorption patterns and quantum data show useful evidence for applying these sensitizers in photonic systems. The performance data obtained from LHE, <math><mrow><mi>▵</mi> <msub><mi>G</mi> <mrow><mi>inject</mi></mrow> </msub> </mrow> </math> , and <math><msub><mtext>V</mtext> <mrow><mi>OC</mi></mrow> </msub> </math> metrics indicates these dyes are suitable for upcoming experimental tests which guide improvements to dye-sensitized solar cells. The study analyzes structural adjustments and electronic properties of these chromophores to show how they perform in photonic devices. These results help researchers plan new dye-sensitized solar cell experiments while supporting them in creating better solar energy devices.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-025-04231-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We designed and built several triazolone-based dyes (TPA1-TPA5 and PTZ1-PTZ5) by modifying the structure around At-D-π-A. We studied how different donating and accepting groups affect the shape, energy levels, absorption spectra and photovoltaic behavior of these sensitizers using DFT and TDDFT calculations. We used selected functional methods to optimize the ground state of these sensitizer molecules. Our quantum chemistry calculations revealed vital molecular properties such as absorption properties, HOMO-LUMO orbital configurations, energy differences, and chemical properties indicators. The light absorption patterns and quantum data show useful evidence for applying these sensitizers in photonic systems. The performance data obtained from LHE, , and metrics indicates these dyes are suitable for upcoming experimental tests which guide improvements to dye-sensitized solar cells. The study analyzes structural adjustments and electronic properties of these chromophores to show how they perform in photonic devices. These results help researchers plan new dye-sensitized solar cell experiments while supporting them in creating better solar energy devices.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.