A co-conserved gene pair supports Caulobacter iron homeostasis during chelation stress.

IF 2.7 3区 生物学 Q3 MICROBIOLOGY
Sergio Hernandez-Ortiz, Kiwon Ok, Thomas V O'Halloran, Aretha Fiebig, Sean Crosson
{"title":"A co-conserved gene pair supports <i>Caulobacter</i> iron homeostasis during chelation stress.","authors":"Sergio Hernandez-Ortiz, Kiwon Ok, Thomas V O'Halloran, Aretha Fiebig, Sean Crosson","doi":"10.1128/jb.00484-24","DOIUrl":null,"url":null,"abstract":"<p><p>Synthetic metal chelators are widely used in industrial, clinical, and agricultural settings, leading to their accumulation in the environment. We measured the growth of <i>Caulobacter crescentus</i>, a soil and aquatic bacterium, in the presence of the ubiquitous chelator ethylenediaminetetraacetic acid (EDTA) and found that it restricts growth by lowering intracellular iron levels. Using barcoded transposon sequencing, we identified an operonic gene pair, <i>cciT-cciO</i>, that is required to maintain iron homeostasis in laboratory media during EDTA challenge. <i>cciT</i> encodes one of four TonB-dependent transporters that are regulated by the ferric uptake repressor (Fur) and stands out among this group of genes in its ability to support <i>Caulobacter</i> growth across diverse media conditions. The function of CciT strictly requires <i>cciO</i>, which encodes a cytoplasmic Fe<sup>II</sup> dioxygenase-family protein. Our results thus define a functional partnership between an outer membrane iron receptor and a cytoplasmic dioxygenase that are broadly co-conserved in Proteobacteria. We expanded our analysis to natural environments by examining the growth of mutant strains in freshwater from two lakes, each with biochemical and geochemical profiles that differ markedly from standard laboratory media. In lake water, <i>Caulobacter</i> growth did not require <i>cciT</i> or <i>cciO</i> and was less affected by EDTA treatment. This result aligns with our observation that EDTA toxicity is influenced by common forms of biologically chelated iron and the spectrum of free cations present in the medium. Our study defines a conserved iron acquisition system in Proteobacteria and bridges laboratory-based physiology studies with real-world conditions.IMPORTANCEMetal-chelating chemicals are widely used across industries, including as preservatives in the food sector, but their full impact on microbial physiology is not well understood. We identified two genes, <i>cciT</i> and <i>cciO</i>, that function together to support <i>Caulobacter crescentus</i> iron balance when cells are exposed to the common synthetic chelator, EDTA. CciT is an outer membrane transporter and CciO is a dioxygenase-family protein that are mutually conserved in many bacteria, including human pathogens where mutations in <i>cciT</i> homologs are linked to clinical resistance to the siderophore antibiotic cefiderocol. This study identifies a conserved genetic system that supports iron homeostasis during chelation stress and illuminates the iron acquisition versatility and stress resilience of <i>Caulobacter</i> in freshwater environments.</p>","PeriodicalId":15107,"journal":{"name":"Journal of Bacteriology","volume":" ","pages":"e0048424"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bacteriology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/jb.00484-24","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Synthetic metal chelators are widely used in industrial, clinical, and agricultural settings, leading to their accumulation in the environment. We measured the growth of Caulobacter crescentus, a soil and aquatic bacterium, in the presence of the ubiquitous chelator ethylenediaminetetraacetic acid (EDTA) and found that it restricts growth by lowering intracellular iron levels. Using barcoded transposon sequencing, we identified an operonic gene pair, cciT-cciO, that is required to maintain iron homeostasis in laboratory media during EDTA challenge. cciT encodes one of four TonB-dependent transporters that are regulated by the ferric uptake repressor (Fur) and stands out among this group of genes in its ability to support Caulobacter growth across diverse media conditions. The function of CciT strictly requires cciO, which encodes a cytoplasmic FeII dioxygenase-family protein. Our results thus define a functional partnership between an outer membrane iron receptor and a cytoplasmic dioxygenase that are broadly co-conserved in Proteobacteria. We expanded our analysis to natural environments by examining the growth of mutant strains in freshwater from two lakes, each with biochemical and geochemical profiles that differ markedly from standard laboratory media. In lake water, Caulobacter growth did not require cciT or cciO and was less affected by EDTA treatment. This result aligns with our observation that EDTA toxicity is influenced by common forms of biologically chelated iron and the spectrum of free cations present in the medium. Our study defines a conserved iron acquisition system in Proteobacteria and bridges laboratory-based physiology studies with real-world conditions.IMPORTANCEMetal-chelating chemicals are widely used across industries, including as preservatives in the food sector, but their full impact on microbial physiology is not well understood. We identified two genes, cciT and cciO, that function together to support Caulobacter crescentus iron balance when cells are exposed to the common synthetic chelator, EDTA. CciT is an outer membrane transporter and CciO is a dioxygenase-family protein that are mutually conserved in many bacteria, including human pathogens where mutations in cciT homologs are linked to clinical resistance to the siderophore antibiotic cefiderocol. This study identifies a conserved genetic system that supports iron homeostasis during chelation stress and illuminates the iron acquisition versatility and stress resilience of Caulobacter in freshwater environments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Bacteriology
Journal of Bacteriology 生物-微生物学
CiteScore
6.10
自引率
9.40%
发文量
324
审稿时长
1.3 months
期刊介绍: The Journal of Bacteriology (JB) publishes research articles that probe fundamental processes in bacteria, archaea and their viruses, and the molecular mechanisms by which they interact with each other and with their hosts and their environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信