Performance analysis of steel W18CR4V grinding using RSM, DNN-GA, KNN, LM, DT, SVM models, and optimization via desirability function and MOGWO.

IF 3.4 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Heliyon Pub Date : 2025-02-15 eCollection Date: 2025-02-28 DOI:10.1016/j.heliyon.2025.e42640
Sofiane Touati, Haithem Boumediri, Yacine Karmi, Mourad Chitour, Khaled Boumediri, Amina Zemmouri, Athmani Moussa, Filipe Fernandes
{"title":"Performance analysis of steel W18CR4V grinding using RSM, DNN-GA, KNN, LM, DT, SVM models, and optimization via desirability function and MOGWO.","authors":"Sofiane Touati, Haithem Boumediri, Yacine Karmi, Mourad Chitour, Khaled Boumediri, Amina Zemmouri, Athmani Moussa, Filipe Fernandes","doi":"10.1016/j.heliyon.2025.e42640","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents an innovative approach to optimizing the grinding process of W18CR4V steel, a high-performance material used in reamer manufacturing, using advanced machine learning models and multi-objective optimization techniques. The novel combination of Deep Neural Networks with Genetic Algorithm (DNN-GA), K-Nearest Neighbors (KNN), Levenberg-Marquardt (LM), Decision Trees (DT), and Support Vector Machines (SVM) was employed to predict key process outcomes, such as surface roughness (Ra), maximum roughness height (Rz), and production time. The results reveal significant improvements, with Ra values ranging from 0.231 μm to 1.250 μm (up to 81.5 % reduction) and Rz from 1.519 μm to 6.833 μm (up to 77.7 % reduction). The hybrid DNN-GA model achieved R<sup>2</sup> > 0.99, reducing prediction errors by 23-45 % compared to traditional models. Optimization via the Desirability Function achieved Ra values around 0.341 μm and Rz around 2.3 μm, with production times ranging from 1181 to 1426 s. The innovative Multi-Objective Grey Wolf Optimization (MOGWO) provided Pareto-optimal solutions, minimizing Ra to 0.3 μm, Rz to 1.5 μm, and production times between 2000 and 3000 s, offering better balance between surface quality and machining efficiency. This work highlights the unique integration of machine learning models with optimization techniques to significantly enhance grinding performance and manufacturing efficiency in high-precision industries.</p>","PeriodicalId":12894,"journal":{"name":"Heliyon","volume":"11 4","pages":"e42640"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11904558/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heliyon","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.heliyon.2025.e42640","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/28 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents an innovative approach to optimizing the grinding process of W18CR4V steel, a high-performance material used in reamer manufacturing, using advanced machine learning models and multi-objective optimization techniques. The novel combination of Deep Neural Networks with Genetic Algorithm (DNN-GA), K-Nearest Neighbors (KNN), Levenberg-Marquardt (LM), Decision Trees (DT), and Support Vector Machines (SVM) was employed to predict key process outcomes, such as surface roughness (Ra), maximum roughness height (Rz), and production time. The results reveal significant improvements, with Ra values ranging from 0.231 μm to 1.250 μm (up to 81.5 % reduction) and Rz from 1.519 μm to 6.833 μm (up to 77.7 % reduction). The hybrid DNN-GA model achieved R2 > 0.99, reducing prediction errors by 23-45 % compared to traditional models. Optimization via the Desirability Function achieved Ra values around 0.341 μm and Rz around 2.3 μm, with production times ranging from 1181 to 1426 s. The innovative Multi-Objective Grey Wolf Optimization (MOGWO) provided Pareto-optimal solutions, minimizing Ra to 0.3 μm, Rz to 1.5 μm, and production times between 2000 and 3000 s, offering better balance between surface quality and machining efficiency. This work highlights the unique integration of machine learning models with optimization techniques to significantly enhance grinding performance and manufacturing efficiency in high-precision industries.

本研究采用先进的机器学习模型和多目标优化技术,提出了一种优化 W18CR4V 钢(铰刀制造中使用的一种高性能材料)磨削工艺的创新方法。研究采用了深度神经网络与遗传算法 (DNN-GA)、K-近邻 (KNN)、Levenberg-Marquardt (LM)、决策树 (DT) 和支持向量机 (SVM) 的新型组合来预测表面粗糙度 (Ra)、最大粗糙度高度 (Rz) 和生产时间等关键工艺结果。结果显示,Ra 值从 0.231 μm 到 1.250 μm(最多减少 81.5%),Rz 从 1.519 μm 到 6.833 μm(最多减少 77.7%),均有明显改善。DNN-GA 混合模型的 R2 > 0.99,与传统模型相比,预测误差减少了 23-45%。创新的多目标灰狼优化(MOGWO)提供了帕累托最优解决方案,将 Ra 降到 0.3 μm,Rz 降到 1.5 μm,生产时间缩短到 2000 到 3000 s,在表面质量和加工效率之间实现了更好的平衡。这项工作凸显了机器学习模型与优化技术的独特融合,可显著提高高精度行业的磨削性能和生产效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Heliyon
Heliyon MULTIDISCIPLINARY SCIENCES-
CiteScore
4.50
自引率
2.50%
发文量
2793
期刊介绍: Heliyon is an all-science, open access journal that is part of the Cell Press family. Any paper reporting scientifically accurate and valuable research, which adheres to accepted ethical and scientific publishing standards, will be considered for publication. Our growing team of dedicated section editors, along with our in-house team, handle your paper and manage the publication process end-to-end, giving your research the editorial support it deserves.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信