Enhancing NADPH to restore redox homeostasis and lysosomal function in G6PD-deficient microglia.

IF 3.4 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Heliyon Pub Date : 2025-02-15 eCollection Date: 2025-02-28 DOI:10.1016/j.heliyon.2025.e42735
Abir Mondal, Soumyadeep Mukherjee, Prince Upadhyay, Isha Saxena, Soumya Pati, Shailja Singh
{"title":"Enhancing NADPH to restore redox homeostasis and lysosomal function in G6PD-deficient microglia.","authors":"Abir Mondal, Soumyadeep Mukherjee, Prince Upadhyay, Isha Saxena, Soumya Pati, Shailja Singh","doi":"10.1016/j.heliyon.2025.e42735","DOIUrl":null,"url":null,"abstract":"<p><p>Microglia, the immune cells of the central nervous system (CNS), play key roles in neurogenesis, myelination, synaptic transmission, immune surveillance, and neuroinflammation. Inflammatory responses in microglia can lead to oxidative stress and neurodegeneration, contributing to diseases like Parkinson's and Alzheimer's. The enzyme glucose-6-phosphate dehydrogenase (G6PD) is essential for producing nicotinamide adenine dinucleotide phosphate hydrogen (NADPH), which neutralizes oxidative stress. G6PD deficiency has been linked to several disorders, including neurological conditions. Our study shows that G6PD deficiency in microglia reduces NADPH levels, disrupting redox balance and lysosomal function. To address this, we explored alternative metabolic pathways by targeting enzymes like isocitrate dehydrogenase 1 (IDH1) and malic enzyme 1 (ME1), both crucial for NADPH production. Supplementing metabolites such as citric and malic acid improved NADPH levels, while small molecules like dieckol and resveratrol enhanced IDH1 and ME1 expression. The combination of these approaches restored redox homeostasis and lysosomal function, offering potential therapeutic strategies for G6PD deficiency.</p>","PeriodicalId":12894,"journal":{"name":"Heliyon","volume":"11 4","pages":"e42735"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11903804/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heliyon","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.heliyon.2025.e42735","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/28 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Microglia, the immune cells of the central nervous system (CNS), play key roles in neurogenesis, myelination, synaptic transmission, immune surveillance, and neuroinflammation. Inflammatory responses in microglia can lead to oxidative stress and neurodegeneration, contributing to diseases like Parkinson's and Alzheimer's. The enzyme glucose-6-phosphate dehydrogenase (G6PD) is essential for producing nicotinamide adenine dinucleotide phosphate hydrogen (NADPH), which neutralizes oxidative stress. G6PD deficiency has been linked to several disorders, including neurological conditions. Our study shows that G6PD deficiency in microglia reduces NADPH levels, disrupting redox balance and lysosomal function. To address this, we explored alternative metabolic pathways by targeting enzymes like isocitrate dehydrogenase 1 (IDH1) and malic enzyme 1 (ME1), both crucial for NADPH production. Supplementing metabolites such as citric and malic acid improved NADPH levels, while small molecules like dieckol and resveratrol enhanced IDH1 and ME1 expression. The combination of these approaches restored redox homeostasis and lysosomal function, offering potential therapeutic strategies for G6PD deficiency.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Heliyon
Heliyon MULTIDISCIPLINARY SCIENCES-
CiteScore
4.50
自引率
2.50%
发文量
2793
期刊介绍: Heliyon is an all-science, open access journal that is part of the Cell Press family. Any paper reporting scientifically accurate and valuable research, which adheres to accepted ethical and scientific publishing standards, will be considered for publication. Our growing team of dedicated section editors, along with our in-house team, handle your paper and manage the publication process end-to-end, giving your research the editorial support it deserves.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信