{"title":"Spin polarized nodal loop state at Fermi level in the monolayer PrClS.","authors":"Yilin Zhao, Li Zhang, Yufeng Gao","doi":"10.3389/fchem.2025.1544147","DOIUrl":null,"url":null,"abstract":"<p><p>The investigation of two-dimensional materials exhibiting half-metallicity and topological features has become a rapidly growing area of interest, driven by their immense potential in nanoscale spintronics and quantum electronics. In this work, we present a comprehensive study of a two-dimensional PrClS monolayer, revealing its remarkable electronic and mechanical properties. Under its ferromagnetic ground state, the PrClS monolayer is shown to exhibit half-metallic behavior with 100% spin polarization originating from the spin-up channel. Of particular significance is the discovery of a spin-polarized nodal loop state within the spin-up channel. This intriguing state, characterized by a critical dispersion type and its precise alignment with the Fermi energy level, represents a feature of great interest for practical spintronic and quantum applications. Further analysis of the nodal loop topology using a maximally localized Wannier tight-binding Hamiltonian unveils distinct topological edge states. These edge states emerge clearly from the nodal loop crossings and are entirely separated from the bulk band projection, ensuring enhanced experimental detectability. The robustness of this nodal loop state is also explored under the influence of spin-orbit coupling, where it transforms into a unique hourglass-shaped dispersion while maintaining its fundamental characteristics, further solidifying its potential for experimental validation and deployment in advanced technologies. To assess the applicability of the PrClS monolayer in practical settings, its mechanical properties were thoroughly evaluated and several key parameters were analyzed, revealing significant mechanical anisotropy. This anisotropy underscores the importance of directional dependence in structural engineering and highlights the material's versatility for applications requiring tailored mechanical responses. Overall, the PrClS monolayer represents an exceptional platform for investigating spin-polarized topological phenomena and demonstrates strong potential as an exciting material for both fundamental research and technological innovation.</p>","PeriodicalId":12421,"journal":{"name":"Frontiers in Chemistry","volume":"13 ","pages":"1544147"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11903714/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3389/fchem.2025.1544147","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The investigation of two-dimensional materials exhibiting half-metallicity and topological features has become a rapidly growing area of interest, driven by their immense potential in nanoscale spintronics and quantum electronics. In this work, we present a comprehensive study of a two-dimensional PrClS monolayer, revealing its remarkable electronic and mechanical properties. Under its ferromagnetic ground state, the PrClS monolayer is shown to exhibit half-metallic behavior with 100% spin polarization originating from the spin-up channel. Of particular significance is the discovery of a spin-polarized nodal loop state within the spin-up channel. This intriguing state, characterized by a critical dispersion type and its precise alignment with the Fermi energy level, represents a feature of great interest for practical spintronic and quantum applications. Further analysis of the nodal loop topology using a maximally localized Wannier tight-binding Hamiltonian unveils distinct topological edge states. These edge states emerge clearly from the nodal loop crossings and are entirely separated from the bulk band projection, ensuring enhanced experimental detectability. The robustness of this nodal loop state is also explored under the influence of spin-orbit coupling, where it transforms into a unique hourglass-shaped dispersion while maintaining its fundamental characteristics, further solidifying its potential for experimental validation and deployment in advanced technologies. To assess the applicability of the PrClS monolayer in practical settings, its mechanical properties were thoroughly evaluated and several key parameters were analyzed, revealing significant mechanical anisotropy. This anisotropy underscores the importance of directional dependence in structural engineering and highlights the material's versatility for applications requiring tailored mechanical responses. Overall, the PrClS monolayer represents an exceptional platform for investigating spin-polarized topological phenomena and demonstrates strong potential as an exciting material for both fundamental research and technological innovation.
期刊介绍:
Frontiers in Chemistry is a high visiblity and quality journal, publishing rigorously peer-reviewed research across the chemical sciences. Field Chief Editor Steve Suib at the University of Connecticut is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to academics, industry leaders and the public worldwide.
Chemistry is a branch of science that is linked to all other main fields of research. The omnipresence of Chemistry is apparent in our everyday lives from the electronic devices that we all use to communicate, to foods we eat, to our health and well-being, to the different forms of energy that we use. While there are many subtopics and specialties of Chemistry, the fundamental link in all these areas is how atoms, ions, and molecules come together and come apart in what some have come to call the “dance of life”.
All specialty sections of Frontiers in Chemistry are open-access with the goal of publishing outstanding research publications, review articles, commentaries, and ideas about various aspects of Chemistry. The past forms of publication often have specific subdisciplines, most commonly of analytical, inorganic, organic and physical chemistries, but these days those lines and boxes are quite blurry and the silos of those disciplines appear to be eroding. Chemistry is important to both fundamental and applied areas of research and manufacturing, and indeed the outlines of academic versus industrial research are also often artificial. Collaborative research across all specialty areas of Chemistry is highly encouraged and supported as we move forward. These are exciting times and the field of Chemistry is an important and significant contributor to our collective knowledge.