Xuan-Hao Liu, Guang-Rui Wang, Nian-Nian Zhong, Zheng-Rui Zhu, Yao Xiao, Zheng Li, Lin-Lin Bu, Bing Liu
{"title":"Metal-dependent cell death resistance contribute to lymph node metastasis of oral squamous cell carcinoma.","authors":"Xuan-Hao Liu, Guang-Rui Wang, Nian-Nian Zhong, Zheng-Rui Zhu, Yao Xiao, Zheng Li, Lin-Lin Bu, Bing Liu","doi":"10.3389/fcell.2025.1541582","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Ferroptosis and cuproptosis can be summarized as metal-dependent cell death. This study aimed to explore the expression of metal-dependent cell death resistance (MCDR) characteristics in tumor cells of oral squamous cell carcinoma (OSCC) and to explore its relationship with lymph node metastasis (LNM).</p><p><strong>Methods: </strong>By integrating single-cell data of OSCC from public databases, an expression matrix comprising 127,149 cells was constructed. Gene set scores were calculated using the irGSEA package, and GO and KEGG analyses were performed to identify enriched pathways. The R package monocle3 was employed to calculate the cell trajectory and infer evolutionary patterns. The MuSiC2 package was employed to enable the evaluation of cell proportions. Cell-cell interaction information was analyzed using the CellChat package. The expression of cathepsin V (CTSV), glutathione peroxidase 4 (GPX4), and cyclin-dependent kinase inhibitor 2A (CDKN2A) was validated via immunohistochemistry and multiplex immunohistochemistry in oral mucosa (OM), non-metastatic primary tumors (nPT), and metastatic primary tumors (mPT). Additionally, R package oncoPredict was utilized to identify potential drug sensitivities.</p><p><strong>Results: </strong>The malignant cells in OSCC were divided into five subtypes, among which Epi_2 existed more in mPT and had higher MCDR characteristics. In addition, Epi_2 enriched multiple malignant-related pathways such as HEDGEHOG, NOTCH, and MYC. The spatial transcriptome and bulk RNA data verified that the proportion of Epi_2 in mPT was higher than that in nPT. Cell communication analysis showed that the effect of Epi_2 on endothelial cells was enhanced, which was mainly reflected in VEGFR and CXCL signaling pathways. Immunohistochemical results showed that the expression of Epi_2 characteristic markers CTSV and GPX4 in mPT was significantly higher than that in nPT. Multiplex immunohistochemical results showed that the co-expression cells of CTSV, GPX4 and CDKN2A in mPT were more than those in nPT. OSCC patients with high Epi_2 characteristics may have immunotherapy resistance and anti-EGFR treatment resistance. Doramapimod was identified as a sensitive drug.</p><p><strong>Conclusion: </strong>There is a type of malignant cells with characteristics of MDCR in OSCC, which is related to LNM and treatment resistance. It provides a predictive marker for early diagnosis of LNM.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"13 ","pages":"1541582"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11903458/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cell and Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fcell.2025.1541582","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Ferroptosis and cuproptosis can be summarized as metal-dependent cell death. This study aimed to explore the expression of metal-dependent cell death resistance (MCDR) characteristics in tumor cells of oral squamous cell carcinoma (OSCC) and to explore its relationship with lymph node metastasis (LNM).
Methods: By integrating single-cell data of OSCC from public databases, an expression matrix comprising 127,149 cells was constructed. Gene set scores were calculated using the irGSEA package, and GO and KEGG analyses were performed to identify enriched pathways. The R package monocle3 was employed to calculate the cell trajectory and infer evolutionary patterns. The MuSiC2 package was employed to enable the evaluation of cell proportions. Cell-cell interaction information was analyzed using the CellChat package. The expression of cathepsin V (CTSV), glutathione peroxidase 4 (GPX4), and cyclin-dependent kinase inhibitor 2A (CDKN2A) was validated via immunohistochemistry and multiplex immunohistochemistry in oral mucosa (OM), non-metastatic primary tumors (nPT), and metastatic primary tumors (mPT). Additionally, R package oncoPredict was utilized to identify potential drug sensitivities.
Results: The malignant cells in OSCC were divided into five subtypes, among which Epi_2 existed more in mPT and had higher MCDR characteristics. In addition, Epi_2 enriched multiple malignant-related pathways such as HEDGEHOG, NOTCH, and MYC. The spatial transcriptome and bulk RNA data verified that the proportion of Epi_2 in mPT was higher than that in nPT. Cell communication analysis showed that the effect of Epi_2 on endothelial cells was enhanced, which was mainly reflected in VEGFR and CXCL signaling pathways. Immunohistochemical results showed that the expression of Epi_2 characteristic markers CTSV and GPX4 in mPT was significantly higher than that in nPT. Multiplex immunohistochemical results showed that the co-expression cells of CTSV, GPX4 and CDKN2A in mPT were more than those in nPT. OSCC patients with high Epi_2 characteristics may have immunotherapy resistance and anti-EGFR treatment resistance. Doramapimod was identified as a sensitive drug.
Conclusion: There is a type of malignant cells with characteristics of MDCR in OSCC, which is related to LNM and treatment resistance. It provides a predictive marker for early diagnosis of LNM.
期刊介绍:
Frontiers in Cell and Developmental Biology is a broad-scope, interdisciplinary open-access journal, focusing on the fundamental processes of life, led by Prof Amanda Fisher and supported by a geographically diverse, high-quality editorial board.
The journal welcomes submissions on a wide spectrum of cell and developmental biology, covering intracellular and extracellular dynamics, with sections focusing on signaling, adhesion, migration, cell death and survival and membrane trafficking. Additionally, the journal offers sections dedicated to the cutting edge of fundamental and translational research in molecular medicine and stem cell biology.
With a collaborative, rigorous and transparent peer-review, the journal produces the highest scientific quality in both fundamental and applied research, and advanced article level metrics measure the real-time impact and influence of each publication.