Evidence of landscape-driven repeated adaptation among 13 Eucalyptus species.

IF 3.1 2区 环境科学与生态学 Q2 ECOLOGY
Evolution Pub Date : 2025-03-13 DOI:10.1093/evolut/qpaf049
Collin W Ahrens, Jason Bragg, Marlien van der Merwe, Maurizio Rossetto
{"title":"Evidence of landscape-driven repeated adaptation among 13 Eucalyptus species.","authors":"Collin W Ahrens, Jason Bragg, Marlien van der Merwe, Maurizio Rossetto","doi":"10.1093/evolut/qpaf049","DOIUrl":null,"url":null,"abstract":"<p><p>Local adaptation is the biological process by which native populations become more fit. Intraspecific patterns of local adaptation occur through shifts in allele frequency within or near genes and may occur similarly across species. Identifying repeated adaptation across species increases statistical power to determine causal genes driving adaptation and reveals insights into the nature of evolution. These types of insights could have theoretical and applied applications, particularly as the climate continues to change. We interrogate repeated molecular adaptation across 13 eucalypt species. In total, we found 38 candidate genes with shared putatively adaptive signals in as many as 12 species. This suite of genes contains important functions, including MYB proteins, acyl-CoA dehydrogenases and Leucine-rich kinases. Species with restricted and widespread geographical distributions shared putative patterns of adaptation, and phylogenetic closeness did not increase patterns of repeated adaptation compared to geographic overlap. This work provides further evidence that repeated adaptation can occur among orthologs, which may play a consistent role in local adaptation.</p>","PeriodicalId":12082,"journal":{"name":"Evolution","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/evolut/qpaf049","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Local adaptation is the biological process by which native populations become more fit. Intraspecific patterns of local adaptation occur through shifts in allele frequency within or near genes and may occur similarly across species. Identifying repeated adaptation across species increases statistical power to determine causal genes driving adaptation and reveals insights into the nature of evolution. These types of insights could have theoretical and applied applications, particularly as the climate continues to change. We interrogate repeated molecular adaptation across 13 eucalypt species. In total, we found 38 candidate genes with shared putatively adaptive signals in as many as 12 species. This suite of genes contains important functions, including MYB proteins, acyl-CoA dehydrogenases and Leucine-rich kinases. Species with restricted and widespread geographical distributions shared putative patterns of adaptation, and phylogenetic closeness did not increase patterns of repeated adaptation compared to geographic overlap. This work provides further evidence that repeated adaptation can occur among orthologs, which may play a consistent role in local adaptation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Evolution
Evolution 环境科学-进化生物学
CiteScore
5.00
自引率
9.10%
发文量
0
审稿时长
3-6 weeks
期刊介绍: Evolution, published for the Society for the Study of Evolution, is the premier publication devoted to the study of organic evolution and the integration of the various fields of science concerned with evolution. The journal presents significant and original results that extend our understanding of evolutionary phenomena and processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信