Arnaud P J Giese, Andrew Parker, Sakina Rehman, Steve D M Brown, Saima Riazuddin, Craig W Vander Kooi, Michael R Bowl, Zubair M Ahmed
{"title":"CIB2 function is distinct from that of whirlin in the organization of sterocilia architecture.","authors":"Arnaud P J Giese, Andrew Parker, Sakina Rehman, Steve D M Brown, Saima Riazuddin, Craig W Vander Kooi, Michael R Bowl, Zubair M Ahmed","doi":"10.1242/dmm.052043","DOIUrl":null,"url":null,"abstract":"<p><p>Humans and mice with mutations in genes encoding CIB2 and whirlin (WHRN) are deaf. We previously reported that CIB2 binds to WHRN and is essential for stereocilia staircase architecture of cochlear hair cells. Here, we refine the interaction domains of both proteins and show that these proteins play unique roles in stereocilia bundle formation and organization. We found that the EF2 domain of CIB2 binds to the HHD2 region of WHRN. AlphaFold2 multimer independently identified the same interacting regions and gave a thorough structural model. Next, we investigated genetic interaction between murine Cib2 and Whrn. Hearing in mice double heterozygous for functionally null alleles (Cib2KO/+;Whrnwi/+) was similar to that in age-matched wild-type mice, indicating that partial deficiency for both Cib2 and Whrn does not impair hearing. Double homozygous mutant mice (Cib2KO/KO;Whrnwi/wi) were deaf, and their cochlear stereocilia exhibited a predominant phenotype seen in single Whrnwi/wi mutants. Overexpression of WHRN in Cib2KO/KO mice did not rescue the stereocilia morphology. These data suggest that CIB2 is multifunctional, with key independent functions in the development and/or maintenance of the stereocilia staircase pattern in auditory hair cells.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11992350/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Disease Models & Mechanisms","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1242/dmm.052043","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Humans and mice with mutations in genes encoding CIB2 and whirlin (WHRN) are deaf. We previously reported that CIB2 binds to WHRN and is essential for stereocilia staircase architecture of cochlear hair cells. Here, we refine the interaction domains of both proteins and show that these proteins play unique roles in stereocilia bundle formation and organization. We found that the EF2 domain of CIB2 binds to the HHD2 region of WHRN. AlphaFold2 multimer independently identified the same interacting regions and gave a thorough structural model. Next, we investigated genetic interaction between murine Cib2 and Whrn. Hearing in mice double heterozygous for functionally null alleles (Cib2KO/+;Whrnwi/+) was similar to that in age-matched wild-type mice, indicating that partial deficiency for both Cib2 and Whrn does not impair hearing. Double homozygous mutant mice (Cib2KO/KO;Whrnwi/wi) were deaf, and their cochlear stereocilia exhibited a predominant phenotype seen in single Whrnwi/wi mutants. Overexpression of WHRN in Cib2KO/KO mice did not rescue the stereocilia morphology. These data suggest that CIB2 is multifunctional, with key independent functions in the development and/or maintenance of the stereocilia staircase pattern in auditory hair cells.
期刊介绍:
Disease Models & Mechanisms (DMM) is an online Open Access journal focusing on the use of model systems to better understand, diagnose and treat human disease.