A tension-induced morphological transition shapes the avian extra-embryonic territory.

IF 8.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Arthur Michaut, Alexander Chamolly, Aurélien Villedieu, Francis Corson, Jérôme Gros
{"title":"A tension-induced morphological transition shapes the avian extra-embryonic territory.","authors":"Arthur Michaut, Alexander Chamolly, Aurélien Villedieu, Francis Corson, Jérôme Gros","doi":"10.1016/j.cub.2025.02.028","DOIUrl":null,"url":null,"abstract":"<p><p>The segregation of the extra-embryonic lineage is one of the earliest events and a key step in amniote development. Whereas the regulation of extra-embryonic cell fate specification has been extensively studied, little is known about the morphogenetic events underlying the formation of this lineage. Here, taking advantage of the amenability of avian embryos to live and quantitative imaging, we investigate the cell- and tissue-scale dynamics of epiboly, the process during which the epiblast expands to engulf the entire yolk. We show that tension arising from the outward migration of the epiblast border on the vitelline membrane stretches extra-embryonic cells, which reversibly transition from a columnar to a squamous morphology. The propagation of this tension is strongly attenuated in the embryonic territory, which concomitantly undergoes fluid-like motion, culminating in the formation of the primitive streak. We formulate a simple viscoelastic model in which the epiblast responds elastically to isotropic stress but, on a similar timescale, flows in response to shear stress, and we show that it recapitulates the flows and deformation of both embryonic and extra-embryonic tissues. Together, our results clarify the mechanical basis of early avian embryogenesis and provide a framework unifying the divergent mechanical behaviors observed in the contiguous embryonic and extra-embryonic territories that make up the epiblast.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2025.02.028","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The segregation of the extra-embryonic lineage is one of the earliest events and a key step in amniote development. Whereas the regulation of extra-embryonic cell fate specification has been extensively studied, little is known about the morphogenetic events underlying the formation of this lineage. Here, taking advantage of the amenability of avian embryos to live and quantitative imaging, we investigate the cell- and tissue-scale dynamics of epiboly, the process during which the epiblast expands to engulf the entire yolk. We show that tension arising from the outward migration of the epiblast border on the vitelline membrane stretches extra-embryonic cells, which reversibly transition from a columnar to a squamous morphology. The propagation of this tension is strongly attenuated in the embryonic territory, which concomitantly undergoes fluid-like motion, culminating in the formation of the primitive streak. We formulate a simple viscoelastic model in which the epiblast responds elastically to isotropic stress but, on a similar timescale, flows in response to shear stress, and we show that it recapitulates the flows and deformation of both embryonic and extra-embryonic tissues. Together, our results clarify the mechanical basis of early avian embryogenesis and provide a framework unifying the divergent mechanical behaviors observed in the contiguous embryonic and extra-embryonic territories that make up the epiblast.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Biology
Current Biology 生物-生化与分子生物学
CiteScore
11.80
自引率
2.20%
发文量
869
审稿时长
46 days
期刊介绍: Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信