Feng Li, Bi Wang, Xianxian Fu, Jinqiang Liang, Xi Xiao, Xiaobin Wei
{"title":"Protective effects of <i>Scutellaria barbata</i> against hepatocyte apoptosis during hepatic fibrosis progression.","authors":"Feng Li, Bi Wang, Xianxian Fu, Jinqiang Liang, Xi Xiao, Xiaobin Wei","doi":"10.1007/s10616-025-00738-2","DOIUrl":null,"url":null,"abstract":"<p><p><i>Scutellaria barbata</i> is a medicinal plant with anti-inflammatory, antioxidant, and antitumor properties. Limited studies exist on the link between <i>S. barbata</i> and liver fibrosis. The focus of this study is to examine the impact of <i>S. barbata</i>-containing serum on rat hepatocytes undergoing hepatic fibrosis. Molecular mechanisms underlying the observed effects are sought to be predicted. Transforming growth factor β1 (TGF-β1)-treated hepatic stellate cells (HSCs) supernatant was utilized to produce hepatic fibrosis-like conditions in hepatocytes BRL-3A cultured in vitro. <i>S. barbata</i>-containing serum was used as an intervention, with various dosage groups and a positive drug group (N-acetylcysteine). Cell proliferation, mitochondrial membrane potential (MMP), apoptosis, and expression of apoptosis-related proteins and genes were assessed through various assays and techniques. Bioinformatics analysis was employed to predict target genes and signaling pathways affected by <i>S. barbata</i>. Chemical components of S. barbata in the serum were detected by ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-QE-MS) was used to identify. Cellular experiments demonstrated that <i>S. barbata</i>-containing serum restored cell proliferation and reduced apoptotic activity induced by the fibrosis model, with a significant downregulation of apoptosis-related proteins (cleaved-Caspase-3, Bax), a substantial upregulation of the anti-apoptotic protein BCL-2, and a substantial elevation in the level of cellular MMP. Bioinformatics analysis highlighted the involvement of <i>S. barbata</i> in hepatocyte apoptosis during liver fibrosis, possibly through pathways like PI3K-Akt. UHPLC-QE-MS identified 29 chemical components of <i>S. barbata</i> in the bloodstream, suggesting their role in anti-hepatic fibrosis effects. <i>S. barbata</i> was found to effectively inhibit hepatocyte apoptosis during hepatic fibrosis.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"77 2","pages":"78"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11896960/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-025-00738-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Scutellaria barbata is a medicinal plant with anti-inflammatory, antioxidant, and antitumor properties. Limited studies exist on the link between S. barbata and liver fibrosis. The focus of this study is to examine the impact of S. barbata-containing serum on rat hepatocytes undergoing hepatic fibrosis. Molecular mechanisms underlying the observed effects are sought to be predicted. Transforming growth factor β1 (TGF-β1)-treated hepatic stellate cells (HSCs) supernatant was utilized to produce hepatic fibrosis-like conditions in hepatocytes BRL-3A cultured in vitro. S. barbata-containing serum was used as an intervention, with various dosage groups and a positive drug group (N-acetylcysteine). Cell proliferation, mitochondrial membrane potential (MMP), apoptosis, and expression of apoptosis-related proteins and genes were assessed through various assays and techniques. Bioinformatics analysis was employed to predict target genes and signaling pathways affected by S. barbata. Chemical components of S. barbata in the serum were detected by ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-QE-MS) was used to identify. Cellular experiments demonstrated that S. barbata-containing serum restored cell proliferation and reduced apoptotic activity induced by the fibrosis model, with a significant downregulation of apoptosis-related proteins (cleaved-Caspase-3, Bax), a substantial upregulation of the anti-apoptotic protein BCL-2, and a substantial elevation in the level of cellular MMP. Bioinformatics analysis highlighted the involvement of S. barbata in hepatocyte apoptosis during liver fibrosis, possibly through pathways like PI3K-Akt. UHPLC-QE-MS identified 29 chemical components of S. barbata in the bloodstream, suggesting their role in anti-hepatic fibrosis effects. S. barbata was found to effectively inhibit hepatocyte apoptosis during hepatic fibrosis.
期刊介绍:
The scope of the Journal includes:
1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products.
2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools.
3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research.
4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy.
5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.