{"title":"Numerical study of terahertz radiation from N-polar AlGaN/GaN HEMT under asymmetric boundaries.","authors":"Runxian Xing, Hongyang Guo, Bohan Guo, Guohao Yu, Ping Zhang, Jia'an Zhou, An Yang, Yu Li, Chunfeng Hao, Huixin Yue, Zhongming Zeng, Xinping Zhang, Baoshun Zhang","doi":"10.1007/s12200-025-00148-4","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we have studied the electrical excitation of plasma-wave in N-polar AlGaN/GaN high electron mobility transistors (HEMT) under asymmetric boundaries leads to terahertz emission. Numerical calculations are conducted through the simultaneous solution of Maxwell's equations and the self-consistent hydrodynamic model. By employing this method, we solved the plasma-wave model in the channel of an N-polar AlGaN/GaN HEMT. We estimate that, under ideal boundary conditions and with sufficient channel mobility, these devices could generate milliwatts of power. The effects of different GaN channel layer thickness, carrier concentration, gate length and channel carrier velocity on plasma wave oscillation and terahertz radiation in N-polar AlGaN/GaN HEMT are considered. These simulation results based on Dyakonov-Shur instability provide guidance for the future design of high-radiation-power on-chip terahertz sources based on N-polar AlGaN/GaN HEMTs.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"18 1","pages":"4"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11906926/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12200-025-00148-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we have studied the electrical excitation of plasma-wave in N-polar AlGaN/GaN high electron mobility transistors (HEMT) under asymmetric boundaries leads to terahertz emission. Numerical calculations are conducted through the simultaneous solution of Maxwell's equations and the self-consistent hydrodynamic model. By employing this method, we solved the plasma-wave model in the channel of an N-polar AlGaN/GaN HEMT. We estimate that, under ideal boundary conditions and with sufficient channel mobility, these devices could generate milliwatts of power. The effects of different GaN channel layer thickness, carrier concentration, gate length and channel carrier velocity on plasma wave oscillation and terahertz radiation in N-polar AlGaN/GaN HEMT are considered. These simulation results based on Dyakonov-Shur instability provide guidance for the future design of high-radiation-power on-chip terahertz sources based on N-polar AlGaN/GaN HEMTs.
期刊介绍:
Frontiers of Optoelectronics seeks to provide a multidisciplinary forum for a broad mix of peer-reviewed academic papers in order to promote rapid communication and exchange between researchers in China and abroad. It introduces and reflects significant achievements being made in the field of photonics or optoelectronics. The topics include, but are not limited to, semiconductor optoelectronics, nano-photonics, information photonics, energy photonics, ultrafast photonics, biomedical photonics, nonlinear photonics, fiber optics, laser and terahertz technology and intelligent photonics. The journal publishes reviews, research articles, letters, comments, special issues and so on.
Frontiers of Optoelectronics especially encourages papers from new emerging and multidisciplinary areas, papers reflecting the international trends of research and development, and on special topics reporting progress made in the field of optoelectronics. All published papers will reflect the original thoughts of researchers and practitioners on basic theories, design and new technology in optoelectronics.
Frontiers of Optoelectronics is strictly peer-reviewed and only accepts original submissions in English. It is a fully OA journal and the APCs are covered by Higher Education Press and Huazhong University of Science and Technology.
● Presents the latest developments in optoelectronics and optics
● Emphasizes the latest developments of new optoelectronic materials, devices, systems and applications
● Covers industrial photonics, information photonics, biomedical photonics, energy photonics, laser and terahertz technology, and more