Pathophysiology and therapies of CKD-associated secondary hyperparathyroidism.

IF 3.9 2区 医学 Q1 UROLOGY & NEPHROLOGY
Clinical Kidney Journal Pub Date : 2025-03-13 eCollection Date: 2025-03-01 DOI:10.1093/ckj/sfae423
Sandro Mazzaferro, Lida Tartaglione, Martine Cohen-Solal, Minh Hoang Tran, Marzia Pasquali, Silverio Rotondi, Pablo Ureña Torres
{"title":"Pathophysiology and therapies of CKD-associated secondary hyperparathyroidism.","authors":"Sandro Mazzaferro, Lida Tartaglione, Martine Cohen-Solal, Minh Hoang Tran, Marzia Pasquali, Silverio Rotondi, Pablo Ureña Torres","doi":"10.1093/ckj/sfae423","DOIUrl":null,"url":null,"abstract":"<p><p>Uremic secondary hyperparathyroidism (SHP) refers to the biochemical abnormalities that characterize CKD-MBD. However, historically parathyroid hormone (PTH) is identified as the key culprit hormone and the essential biomarker of secondary hyperparathyroidism. SHP represents the adaptive response to several mineral abnormalities that initiate and maintain increased PTH secretion through classical mineral derangements and more recently elucidated hormonal dysregulations. Among classic factors involved in the pathogenesis of SHP, phosphate, calcium, and calcitriol have a prominent role. The discovery of new pathogenetic factors involved in the development of SHP (and the eventual CKD-MBD) including fibroblast growth factor-23 (FGF23) and klotho provides new hypothesis and perspectives to our understanding of this complex metabolic disturbance. Recently more than serum phosphate a critical role in regulating FGF23 synthesis and the progression of CKD is ascribed to phosphate pool, reflected by production of glycerol-3-phosphate and the formation of excessive CPP-2. Finally, also skeletal resistance to PTH action, due to dysregulation of the Wnt-β-catenin system and intestinal dysbiosis, affecting the PTH actions on bone are causal factor of SHP. Identifying all the actors at play is mandatory to allow the most precise therapeutic prescription in the individual patient. This paper aims to review, in particular, the pathophysiology of SHP, which is essential to envisage the eventual therapeutic options for the associated MBD.</p>","PeriodicalId":10435,"journal":{"name":"Clinical Kidney Journal","volume":"18 Suppl 1","pages":"i15-i26"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11903092/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Kidney Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/ckj/sfae423","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Uremic secondary hyperparathyroidism (SHP) refers to the biochemical abnormalities that characterize CKD-MBD. However, historically parathyroid hormone (PTH) is identified as the key culprit hormone and the essential biomarker of secondary hyperparathyroidism. SHP represents the adaptive response to several mineral abnormalities that initiate and maintain increased PTH secretion through classical mineral derangements and more recently elucidated hormonal dysregulations. Among classic factors involved in the pathogenesis of SHP, phosphate, calcium, and calcitriol have a prominent role. The discovery of new pathogenetic factors involved in the development of SHP (and the eventual CKD-MBD) including fibroblast growth factor-23 (FGF23) and klotho provides new hypothesis and perspectives to our understanding of this complex metabolic disturbance. Recently more than serum phosphate a critical role in regulating FGF23 synthesis and the progression of CKD is ascribed to phosphate pool, reflected by production of glycerol-3-phosphate and the formation of excessive CPP-2. Finally, also skeletal resistance to PTH action, due to dysregulation of the Wnt-β-catenin system and intestinal dysbiosis, affecting the PTH actions on bone are causal factor of SHP. Identifying all the actors at play is mandatory to allow the most precise therapeutic prescription in the individual patient. This paper aims to review, in particular, the pathophysiology of SHP, which is essential to envisage the eventual therapeutic options for the associated MBD.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Clinical Kidney Journal
Clinical Kidney Journal Medicine-Transplantation
CiteScore
6.70
自引率
10.90%
发文量
242
审稿时长
8 weeks
期刊介绍: About the Journal Clinical Kidney Journal: Clinical and Translational Nephrology (ckj), an official journal of the ERA-EDTA (European Renal Association-European Dialysis and Transplant Association), is a fully open access, online only journal publishing bimonthly. The journal is an essential educational and training resource integrating clinical, translational and educational research into clinical practice. ckj aims to contribute to a translational research culture among nephrologists and kidney pathologists that helps close the gap between basic researchers and practicing clinicians and promote sorely needed innovation in the Nephrology field. All research articles in this journal have undergone peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信