Wenyao Zhang, Christine E Harper, Junsung Lee, Bing Fu, Malissa Ramsukh, Christopher J Hernandez, Peng Chen
{"title":"Transporter excess and clustering facilitate adaptor protein shuttling for bacterial efflux.","authors":"Wenyao Zhang, Christine E Harper, Junsung Lee, Bing Fu, Malissa Ramsukh, Christopher J Hernandez, Peng Chen","doi":"10.1016/j.xcrp.2025.102441","DOIUrl":null,"url":null,"abstract":"<p><p>Multidrug efflux pumps confer not only antibiotic resistance to bacteria but also cell proliferation. In gram-negative bacteria, the ATP-binding cassette (ABC)-family transporter MacB, the adaptor protein MacA, and the outer membrane protein TolC form the MacA<sub>6</sub>:MacB<sub>2</sub>:TolC<sub>3</sub> assembly to extrude antibiotics and virulence factors. Here, using quantitative single-molecule single-cell imaging, we uncover that, in <i>E. coli</i> cells, there is a large excess of MacB (and TolC) driving the limiting adaptor protein MacA mostly into the MacAB-TolC assembly. Moreover, the excess MacB transporters can dynamically cluster around the assembly, and MacA can dynamically disassemble from the MacAB-TolC assembly, leading to an adaptor protein shuttling mechanism for efficient substrate sequestration from the periplasm toward efflux. We further show that both MacB clustering and MacAB-TolC assembly can be perturbed chemically or physically via microfluidics-based extrusion loading for compromised antibiotic tolerance. These insights may provide opportunities for countering the activities of multidrug efflux systems for antimicrobial treatments.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"6 2","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11905320/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2025.102441","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Multidrug efflux pumps confer not only antibiotic resistance to bacteria but also cell proliferation. In gram-negative bacteria, the ATP-binding cassette (ABC)-family transporter MacB, the adaptor protein MacA, and the outer membrane protein TolC form the MacA6:MacB2:TolC3 assembly to extrude antibiotics and virulence factors. Here, using quantitative single-molecule single-cell imaging, we uncover that, in E. coli cells, there is a large excess of MacB (and TolC) driving the limiting adaptor protein MacA mostly into the MacAB-TolC assembly. Moreover, the excess MacB transporters can dynamically cluster around the assembly, and MacA can dynamically disassemble from the MacAB-TolC assembly, leading to an adaptor protein shuttling mechanism for efficient substrate sequestration from the periplasm toward efflux. We further show that both MacB clustering and MacAB-TolC assembly can be perturbed chemically or physically via microfluidics-based extrusion loading for compromised antibiotic tolerance. These insights may provide opportunities for countering the activities of multidrug efflux systems for antimicrobial treatments.
期刊介绍:
Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.