Transporter excess and clustering facilitate adaptor protein shuttling for bacterial efflux.

IF 7.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY
Cell Reports Physical Science Pub Date : 2025-02-19 Epub Date: 2025-02-12 DOI:10.1016/j.xcrp.2025.102441
Wenyao Zhang, Christine E Harper, Junsung Lee, Bing Fu, Malissa Ramsukh, Christopher J Hernandez, Peng Chen
{"title":"Transporter excess and clustering facilitate adaptor protein shuttling for bacterial efflux.","authors":"Wenyao Zhang, Christine E Harper, Junsung Lee, Bing Fu, Malissa Ramsukh, Christopher J Hernandez, Peng Chen","doi":"10.1016/j.xcrp.2025.102441","DOIUrl":null,"url":null,"abstract":"<p><p>Multidrug efflux pumps confer not only antibiotic resistance to bacteria but also cell proliferation. In gram-negative bacteria, the ATP-binding cassette (ABC)-family transporter MacB, the adaptor protein MacA, and the outer membrane protein TolC form the MacA<sub>6</sub>:MacB<sub>2</sub>:TolC<sub>3</sub> assembly to extrude antibiotics and virulence factors. Here, using quantitative single-molecule single-cell imaging, we uncover that, in <i>E. coli</i> cells, there is a large excess of MacB (and TolC) driving the limiting adaptor protein MacA mostly into the MacAB-TolC assembly. Moreover, the excess MacB transporters can dynamically cluster around the assembly, and MacA can dynamically disassemble from the MacAB-TolC assembly, leading to an adaptor protein shuttling mechanism for efficient substrate sequestration from the periplasm toward efflux. We further show that both MacB clustering and MacAB-TolC assembly can be perturbed chemically or physically via microfluidics-based extrusion loading for compromised antibiotic tolerance. These insights may provide opportunities for countering the activities of multidrug efflux systems for antimicrobial treatments.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"6 2","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11905320/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2025.102441","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Multidrug efflux pumps confer not only antibiotic resistance to bacteria but also cell proliferation. In gram-negative bacteria, the ATP-binding cassette (ABC)-family transporter MacB, the adaptor protein MacA, and the outer membrane protein TolC form the MacA6:MacB2:TolC3 assembly to extrude antibiotics and virulence factors. Here, using quantitative single-molecule single-cell imaging, we uncover that, in E. coli cells, there is a large excess of MacB (and TolC) driving the limiting adaptor protein MacA mostly into the MacAB-TolC assembly. Moreover, the excess MacB transporters can dynamically cluster around the assembly, and MacA can dynamically disassemble from the MacAB-TolC assembly, leading to an adaptor protein shuttling mechanism for efficient substrate sequestration from the periplasm toward efflux. We further show that both MacB clustering and MacAB-TolC assembly can be perturbed chemically or physically via microfluidics-based extrusion loading for compromised antibiotic tolerance. These insights may provide opportunities for countering the activities of multidrug efflux systems for antimicrobial treatments.

转运蛋白过剩和聚集有利于细菌外排的衔接蛋白穿梭。
多药外排泵不仅使细菌具有抗生素耐药性,而且使细胞增殖。在革兰氏阴性菌中,atp结合盒(ABC)家族转运蛋白MacB、接头蛋白MacA和外膜蛋白TolC组成mac6:MacB2:TolC3组装体,挤出抗生素和毒力因子。在这里,使用定量单分子单细胞成像,我们发现,在大肠杆菌细胞中,有大量过量的MacB(和TolC)驱动限制性适配器蛋白MacA大部分进入MacAB-TolC组装。此外,过量的MacB转运蛋白可以动态地聚集在组装体周围,MacA可以动态地从MacAB-TolC组装体上拆卸,从而导致适配器蛋白穿梭机制,从而有效地将底物从外质隔离到外排。我们进一步表明,MacB聚类和MacAB-TolC组装都可以通过基于微流体的挤压加载受到化学或物理干扰,从而降低抗生素耐受性。这些见解可能为对抗用于抗菌治疗的多药物外排系统的活动提供机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Reports Physical Science
Cell Reports Physical Science Energy-Energy (all)
CiteScore
11.40
自引率
2.20%
发文量
388
审稿时长
62 days
期刊介绍: Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信