Artificial variables help to avoid over-clustering in single-cell RNA sequencing.

IF 8.1 1区 生物学 Q1 GENETICS & HEREDITY
American journal of human genetics Pub Date : 2025-04-03 Epub Date: 2025-03-12 DOI:10.1016/j.ajhg.2025.02.014
Alan DenAdel, Michelle L Ramseier, Andrew W Navia, Alex K Shalek, Srivatsan Raghavan, Peter S Winter, Ava P Amini, Lorin Crawford
{"title":"Artificial variables help to avoid over-clustering in single-cell RNA sequencing.","authors":"Alan DenAdel, Michelle L Ramseier, Andrew W Navia, Alex K Shalek, Srivatsan Raghavan, Peter S Winter, Ava P Amini, Lorin Crawford","doi":"10.1016/j.ajhg.2025.02.014","DOIUrl":null,"url":null,"abstract":"<p><p>Standard single-cell RNA sequencing (scRNA-seq) pipelines nearly always include unsupervised clustering as a key step in identifying biologically distinct cell types. A follow-up step in these pipelines is to test for differential expression between the identified clusters. When algorithms over-cluster, downstream analyses can produce misleading results. In this work, we present \"recall\" (calibrated clustering with artificial variables), a method for protecting against over-clustering by controlling for the impact of reusing the same data twice when performing differential expression analysis, commonly known as \"double dipping.\" Importantly, our approach can be applied to a wide range of clustering algorithms. Using real and simulated data, we show that recall provides state-of-the-art clustering performance and can rapidly analyze large-scale scRNA-seq studies, even on a personal laptop.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":"940-951"},"PeriodicalIF":8.1000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ajhg.2025.02.014","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Standard single-cell RNA sequencing (scRNA-seq) pipelines nearly always include unsupervised clustering as a key step in identifying biologically distinct cell types. A follow-up step in these pipelines is to test for differential expression between the identified clusters. When algorithms over-cluster, downstream analyses can produce misleading results. In this work, we present "recall" (calibrated clustering with artificial variables), a method for protecting against over-clustering by controlling for the impact of reusing the same data twice when performing differential expression analysis, commonly known as "double dipping." Importantly, our approach can be applied to a wide range of clustering algorithms. Using real and simulated data, we show that recall provides state-of-the-art clustering performance and can rapidly analyze large-scale scRNA-seq studies, even on a personal laptop.

人工变量有助于避免单细胞 RNA 测序中的过度聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.70
自引率
4.10%
发文量
185
审稿时长
1 months
期刊介绍: The American Journal of Human Genetics (AJHG) is a monthly journal published by Cell Press, chosen by The American Society of Human Genetics (ASHG) as its premier publication starting from January 2008. AJHG represents Cell Press's first society-owned journal, and both ASHG and Cell Press anticipate significant synergies between AJHG content and that of other Cell Press titles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信