Nurgül Abul, Yeliz Demir, Aykut Öztekin, Hasan Özdemir
{"title":"Determination of the Inhibitory Potential of Chalcones on Myeloperoxidase Enzyme Activity: In vitro and Molecular Docking Studies.","authors":"Nurgül Abul, Yeliz Demir, Aykut Öztekin, Hasan Özdemir","doi":"10.1007/s12013-025-01719-0","DOIUrl":null,"url":null,"abstract":"<p><p>Myeloperoxidase (MPO) is a highly abundant hemoprotein in neutrophils and monocytes. It has a crucial function in immunological surveillance and the body's defensive systems. Nevertheless, there is a strong correlation between elevated MPO activity and the development and advancement of inflammatory processes. Chalcone derivatives serve as fundamental components of pharmaceutical raw materials, which have been extensively utilized for the treatment of several ailments. In this study, it was studied the effect of some chalchones on MPO activity. Chalcones (1-6) strongly inhibited MPO with IC<sub>50s</sub> in the micromolar range of 0.05-0.828 µM. In particular, 4,4'-difluorochalcone (3) exhibited the best MPO inhibitory impact with IC<sub>50</sub> of 0.05 µM. Additionally, molecular docking experiments were conducted to predict the binding affinities and interactions of the chalcone derivatives with the MPO active site. The docking results revealed that all tested compounds exhibited favorable binding energies, with ΔG Vina values ranging from -7.6 to -8.4 kcal/mol. Compound 3 demonstrated the strongest binding affinity (-8.4 kcal/mol), forming key hydrogen bonds with Gln91 and His95, and halogen interactions with the fluorine atoms, which may account for its enhanced inhibitory activity. These combined in vitro and in silico results suggest that chalcone derivatives hold significant potential as therapeutic candidates targeting MPO.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-025-01719-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Myeloperoxidase (MPO) is a highly abundant hemoprotein in neutrophils and monocytes. It has a crucial function in immunological surveillance and the body's defensive systems. Nevertheless, there is a strong correlation between elevated MPO activity and the development and advancement of inflammatory processes. Chalcone derivatives serve as fundamental components of pharmaceutical raw materials, which have been extensively utilized for the treatment of several ailments. In this study, it was studied the effect of some chalchones on MPO activity. Chalcones (1-6) strongly inhibited MPO with IC50s in the micromolar range of 0.05-0.828 µM. In particular, 4,4'-difluorochalcone (3) exhibited the best MPO inhibitory impact with IC50 of 0.05 µM. Additionally, molecular docking experiments were conducted to predict the binding affinities and interactions of the chalcone derivatives with the MPO active site. The docking results revealed that all tested compounds exhibited favorable binding energies, with ΔG Vina values ranging from -7.6 to -8.4 kcal/mol. Compound 3 demonstrated the strongest binding affinity (-8.4 kcal/mol), forming key hydrogen bonds with Gln91 and His95, and halogen interactions with the fluorine atoms, which may account for its enhanced inhibitory activity. These combined in vitro and in silico results suggest that chalcone derivatives hold significant potential as therapeutic candidates targeting MPO.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.