Metabolomics and Transcriptomics Reveal the Function of Trigonelline and Its Synthesis Gene BrNANMT in Clubroot Susceptibility of Brassica rapa.

IF 6 1区 生物学 Q1 PLANT SCIENCES
Yuting Zhang, Mingliang Jiang, Junjie Ma, Jingjing Chen, Liyan Kong, Zongxiang Zhan, Xiaonan Li, Zhongyun Piao
{"title":"Metabolomics and Transcriptomics Reveal the Function of Trigonelline and Its Synthesis Gene BrNANMT in Clubroot Susceptibility of Brassica rapa.","authors":"Yuting Zhang, Mingliang Jiang, Junjie Ma, Jingjing Chen, Liyan Kong, Zongxiang Zhan, Xiaonan Li, Zhongyun Piao","doi":"10.1111/pce.15474","DOIUrl":null,"url":null,"abstract":"<p><p>Clubroot caused by Plasmodiophora brassicae, a soil-borne pathogen, threatens cruciferous plants, resulting in severe yield reductions. To identify genes and metabolites associated with clubroot resistance and susceptibility, we performed metabolome and transcriptome analyses of Brassica rapa inbred line CRBJN3-2 inoculated with resistant and susceptible P. brassicae strains. Co-expression network analysis revealed that trigonelline accumulation, linked to the nicotinic acid and nicotinamide metabolic pathways, was significantly higher in clubroot-susceptible plants. Furthermore, applying trigonelline externally aggravated clubroot in both B. rapa and Arabidopsis thaliana. Overexpression of the nicotinate N-methyltransferase gene (BrNANMT) responsible for the conversion from nicotinate to trigonelline in these plants increased disease susceptibility, while loss of this gene's function resulted in improved clubroot resistance. Our study is the first to reveal the function of trigonelline in promoting clubroot development and identify BrNANMT as a clubroot susceptibility gene and trigonelline can be used as a marker metabolite in response to P. brassicae infection. Gene editing of BrNANMT provides new insights for the development of Brassica crops with improved resistance to clubroot.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15474","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Clubroot caused by Plasmodiophora brassicae, a soil-borne pathogen, threatens cruciferous plants, resulting in severe yield reductions. To identify genes and metabolites associated with clubroot resistance and susceptibility, we performed metabolome and transcriptome analyses of Brassica rapa inbred line CRBJN3-2 inoculated with resistant and susceptible P. brassicae strains. Co-expression network analysis revealed that trigonelline accumulation, linked to the nicotinic acid and nicotinamide metabolic pathways, was significantly higher in clubroot-susceptible plants. Furthermore, applying trigonelline externally aggravated clubroot in both B. rapa and Arabidopsis thaliana. Overexpression of the nicotinate N-methyltransferase gene (BrNANMT) responsible for the conversion from nicotinate to trigonelline in these plants increased disease susceptibility, while loss of this gene's function resulted in improved clubroot resistance. Our study is the first to reveal the function of trigonelline in promoting clubroot development and identify BrNANMT as a clubroot susceptibility gene and trigonelline can be used as a marker metabolite in response to P. brassicae infection. Gene editing of BrNANMT provides new insights for the development of Brassica crops with improved resistance to clubroot.

由土壤传播的病原体 Plasmodiophora brassicae 引起的棒根病威胁着十字花科植物,导致严重减产。为了确定与棒根病抗性和易感性相关的基因和代谢物,我们对接种了抗性和易感性P. brassicae菌株的Brassica rapa近交系CRBJN3-2进行了代谢组和转录组分析。共表达网络分析显示,与烟酸和烟酰胺代谢途径相关的三尖杉酯碱积累在易感球根病的植株中明显较高。此外,从外部施用三尖杉碱会加重 B. rapa 和拟南芥的棍棒病。在这些植物中,负责将烟酸转化为三尖杉碱的烟酸 N-甲基转移酶基因(BrNANMT)的过表达会增加对疾病的易感性,而该基因功能的缺失则会提高对球根病的抗性。我们的研究首次揭示了三尖杉酯碱在促进棒根病发展中的功能,并确定 BrNANMT 是棒根病的易感基因,三尖杉酯碱可用作铜锈蝇感染的标记代谢物。对 BrNANMT 的基因编辑为开发具有更好抗球根病能力的甘蓝作物提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信