Shanshan Mao, Yu Zhang, Chaoqun Chen, Liu Cong, Zuobin Zhu, Zhiyu Xie, Ying Li
{"title":"Diagnosis Accuracy of Raman Spectroscopy in the Identification of Pathogenic Bacteria.","authors":"Shanshan Mao, Yu Zhang, Chaoqun Chen, Liu Cong, Zuobin Zhu, Zhiyu Xie, Ying Li","doi":"10.1002/bab.2741","DOIUrl":null,"url":null,"abstract":"<p><p>As an emerging technology, Raman spectroscopy (RS) has been used to identify pathogenic bacteria with excellent performance. The aim of this study was to verify the diagnosis accuracy of RS in identification of pathogenic bacteria. This meta-analysis systematically evaluated the accuracy of RS for identification of pathogenic bacteria. We searched the electronic databases of PubMed and Web of Science to obtain relevant articles; STATA 15.1 was used to analyze all sensitivities, specificies, and their 95% confidence interval (CI). The summary receiver operating characteristic curves (SROC) and area under the curve (AUC) were used to display more performance of RS. Nineteen articles were included according to the inclusion and exclusion criteria. The pooled sensitivity and specificity of RS for the identification of pathogenic bacteria were 0.94 (95% CI, 0.89-0.96) and 0.99 (95% CI, 0.97-0.99). The diagnostic odds ratio (DOR) was 1209 (95% CI, 367-3980), and AUC of SROC was 0.99 (95% CI, 0.98-1.00). For gram-positive bacteria, the sensitivity and specificity of different species ranged from 0.00 to 1.00 and 0.96 to 1.00, with a pooled sensitivity and specificity of 0.96 (95% CI, 0.90-0.98) and 0.99 (95% CI, 0.98-1.00). For gram-negative bacteria, the sensitivity and specificity of different species ranged from 0.30 to 1.00 and 0.92 to 1.00, with a pooled sensitivity and specificity of 0.92 (95% CI, 0.76-0.98) and 0.99 (95% CI, 0.98-1.00). For acid-fast bacteria, the sensitivity and specificity of different species ranged from 0.83 to 1.00 and 0.96 to 1.00, with a pooled sensitivity and specificity of 0.96 (95% CI, 0.84-0.99) and 1.00 (95% CI, 0.96-1.00). RS provides a new method for pathogenic bacteria identification and demonstrates high sensitivity and specificity for most included species.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":"e2741"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and applied biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bab.2741","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
As an emerging technology, Raman spectroscopy (RS) has been used to identify pathogenic bacteria with excellent performance. The aim of this study was to verify the diagnosis accuracy of RS in identification of pathogenic bacteria. This meta-analysis systematically evaluated the accuracy of RS for identification of pathogenic bacteria. We searched the electronic databases of PubMed and Web of Science to obtain relevant articles; STATA 15.1 was used to analyze all sensitivities, specificies, and their 95% confidence interval (CI). The summary receiver operating characteristic curves (SROC) and area under the curve (AUC) were used to display more performance of RS. Nineteen articles were included according to the inclusion and exclusion criteria. The pooled sensitivity and specificity of RS for the identification of pathogenic bacteria were 0.94 (95% CI, 0.89-0.96) and 0.99 (95% CI, 0.97-0.99). The diagnostic odds ratio (DOR) was 1209 (95% CI, 367-3980), and AUC of SROC was 0.99 (95% CI, 0.98-1.00). For gram-positive bacteria, the sensitivity and specificity of different species ranged from 0.00 to 1.00 and 0.96 to 1.00, with a pooled sensitivity and specificity of 0.96 (95% CI, 0.90-0.98) and 0.99 (95% CI, 0.98-1.00). For gram-negative bacteria, the sensitivity and specificity of different species ranged from 0.30 to 1.00 and 0.92 to 1.00, with a pooled sensitivity and specificity of 0.92 (95% CI, 0.76-0.98) and 0.99 (95% CI, 0.98-1.00). For acid-fast bacteria, the sensitivity and specificity of different species ranged from 0.83 to 1.00 and 0.96 to 1.00, with a pooled sensitivity and specificity of 0.96 (95% CI, 0.84-0.99) and 1.00 (95% CI, 0.96-1.00). RS provides a new method for pathogenic bacteria identification and demonstrates high sensitivity and specificity for most included species.
期刊介绍:
Published since 1979, Biotechnology and Applied Biochemistry is dedicated to the rapid publication of high quality, significant research at the interface between life sciences and their technological exploitation.
The Editors will consider papers for publication based on their novelty and impact as well as their contribution to the advancement of medical biotechnology and industrial biotechnology, covering cutting-edge research in synthetic biology, systems biology, metabolic engineering, bioengineering, biomaterials, biosensing, and nano-biotechnology.