Ian Engels, Alexandra Burnett, Prudence Robert, Camille Pironneau, Grégory Abrams, Robbin Bouwmeester, Peter Van der Plaetsen, Kévin Di Modica, Marcel Otte, Lawrence Guy Straus, Valentin Fischer, Fabrice Bray, Bart Mesuere, Isabelle De Groote, Dieter Deforce, Simon Daled, Maarten Dhaenens
{"title":"Classification of Collagens via Peptide Ambiguation, in a Paleoproteomic LC-MS/MS-Based Taxonomic Pipeline.","authors":"Ian Engels, Alexandra Burnett, Prudence Robert, Camille Pironneau, Grégory Abrams, Robbin Bouwmeester, Peter Van der Plaetsen, Kévin Di Modica, Marcel Otte, Lawrence Guy Straus, Valentin Fischer, Fabrice Bray, Bart Mesuere, Isabelle De Groote, Dieter Deforce, Simon Daled, Maarten Dhaenens","doi":"10.1021/acs.jproteome.4c00962","DOIUrl":null,"url":null,"abstract":"<p><p>Liquid chromatography-mass spectrometry (LC-MS/MS) extends the matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) Zooarcheology by Mass Spectrometry (ZooMS) \"mass fingerprinting\" approach to species identification by providing fragmentation spectra for each peptide. However, ancient bone samples generate sparse data containing only a few collagen proteins, rendering target-decoy strategies unusable and increasing uncertainty in peptide annotation. To ameliorate this issue, we present a ZooMS/MS data pipeline that builds on a manually curated Collagen database and comprises two novel algorithms: isoBLAST and ClassiCOL. isoBLAST first extends peptide ambiguity by generating all \"potential peptide candidates\" isobaric to the annotated precursor. The exhaustive set of candidates created is then used to retain or reject different potential paths at each taxonomic branching point from superkingdom to species, until the greatest possible specificity is reached. Uniquely, ClassiCOL allows for the identification of taxonomic mixtures, including contaminated samples, as well as suggesting taxonomies not represented in sequence databases, including extinct taxa. All considered ambiguity is then graphically represented with clear prioritization of the potential taxa in the sample. Using public as well as in-house data acquired on different instruments, we demonstrate the performance of this universal postprocessing and explore the identification of both genetic and sample mixtures. Diet reconstruction from 40,000-year-old cave hyena coprolites illustrates the exciting potential of this approach.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.4c00962","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Liquid chromatography-mass spectrometry (LC-MS/MS) extends the matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) Zooarcheology by Mass Spectrometry (ZooMS) "mass fingerprinting" approach to species identification by providing fragmentation spectra for each peptide. However, ancient bone samples generate sparse data containing only a few collagen proteins, rendering target-decoy strategies unusable and increasing uncertainty in peptide annotation. To ameliorate this issue, we present a ZooMS/MS data pipeline that builds on a manually curated Collagen database and comprises two novel algorithms: isoBLAST and ClassiCOL. isoBLAST first extends peptide ambiguity by generating all "potential peptide candidates" isobaric to the annotated precursor. The exhaustive set of candidates created is then used to retain or reject different potential paths at each taxonomic branching point from superkingdom to species, until the greatest possible specificity is reached. Uniquely, ClassiCOL allows for the identification of taxonomic mixtures, including contaminated samples, as well as suggesting taxonomies not represented in sequence databases, including extinct taxa. All considered ambiguity is then graphically represented with clear prioritization of the potential taxa in the sample. Using public as well as in-house data acquired on different instruments, we demonstrate the performance of this universal postprocessing and explore the identification of both genetic and sample mixtures. Diet reconstruction from 40,000-year-old cave hyena coprolites illustrates the exciting potential of this approach.
期刊介绍:
Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".