The Omics Landscape of Long COVID-A Comprehensive Systematic Review to Advance Biomarker, Target and Drug Discovery.

IF 12.6 1区 医学 Q1 ALLERGY
Allergy Pub Date : 2025-03-14 DOI:10.1111/all.16526
Nadia Baalbaki, Elise M A Slob, Samuel W Kazer, Mahmoud I Abdel-Aziz, Harm Jan Bogaard, Korneliusz Golebski, Anke H Maitland-van der Zee
{"title":"The Omics Landscape of Long COVID-A Comprehensive Systematic Review to Advance Biomarker, Target and Drug Discovery.","authors":"Nadia Baalbaki, Elise M A Slob, Samuel W Kazer, Mahmoud I Abdel-Aziz, Harm Jan Bogaard, Korneliusz Golebski, Anke H Maitland-van der Zee","doi":"10.1111/all.16526","DOIUrl":null,"url":null,"abstract":"<p><p>An estimated 10% of coronavirus disease (COVID-19) survivors suffer from persisting symptoms referred to as long COVID (LC), a condition for which approved treatment options are still lacking. This systematic review (PROSPERO: CRD42024499281) aimed to explore the pathophysiological mechanisms underlying LC and potential treatable traits across symptom-based phenotypes. We included studies with primary data, written in English, focusing on omics analyses of human samples from LC patients with persistent symptoms of at least 3 months. Our search in PubMed and Embase, conducted on January 8, 2024, identified 642 studies, of which 29 met the inclusion criteria after full-text assessment. The risk of bias was evaluated using the Joanna Briggs Institute appraisal tool. The synthesis of omics data, including genomics, transcriptomics, proteomics, metabolomics, and metagenomics, revealed common findings associated with fatigue, cardiovascular, pulmonary, neurological, and gastrointestinal phenotypes. Key findings included mitochondrial dysfunction, dysregulated microRNAs associated with pulmonary dysfunction, tissue impairment, blood-brain barrier disruption, coagulopathy, vascular dysfunction, microbiome disturbances, microbial-derived metabolite production and persistent inflammation. Limitations include cross-study heterogeneity and variability in sampling methods. Our review emphasizes the complexity of LC and the need for further longitudinal omics-integrated studies to advance the development of biomarkers and targeted treatments.</p>","PeriodicalId":122,"journal":{"name":"Allergy","volume":" ","pages":""},"PeriodicalIF":12.6000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Allergy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/all.16526","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ALLERGY","Score":null,"Total":0}
引用次数: 0

Abstract

An estimated 10% of coronavirus disease (COVID-19) survivors suffer from persisting symptoms referred to as long COVID (LC), a condition for which approved treatment options are still lacking. This systematic review (PROSPERO: CRD42024499281) aimed to explore the pathophysiological mechanisms underlying LC and potential treatable traits across symptom-based phenotypes. We included studies with primary data, written in English, focusing on omics analyses of human samples from LC patients with persistent symptoms of at least 3 months. Our search in PubMed and Embase, conducted on January 8, 2024, identified 642 studies, of which 29 met the inclusion criteria after full-text assessment. The risk of bias was evaluated using the Joanna Briggs Institute appraisal tool. The synthesis of omics data, including genomics, transcriptomics, proteomics, metabolomics, and metagenomics, revealed common findings associated with fatigue, cardiovascular, pulmonary, neurological, and gastrointestinal phenotypes. Key findings included mitochondrial dysfunction, dysregulated microRNAs associated with pulmonary dysfunction, tissue impairment, blood-brain barrier disruption, coagulopathy, vascular dysfunction, microbiome disturbances, microbial-derived metabolite production and persistent inflammation. Limitations include cross-study heterogeneity and variability in sampling methods. Our review emphasizes the complexity of LC and the need for further longitudinal omics-integrated studies to advance the development of biomarkers and targeted treatments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Allergy
Allergy 医学-过敏
CiteScore
26.10
自引率
9.70%
发文量
393
审稿时长
2 months
期刊介绍: Allergy is an international and multidisciplinary journal that aims to advance, impact, and communicate all aspects of the discipline of Allergy/Immunology. It publishes original articles, reviews, position papers, guidelines, editorials, news and commentaries, letters to the editors, and correspondences. The journal accepts articles based on their scientific merit and quality. Allergy seeks to maintain contact between basic and clinical Allergy/Immunology and encourages contributions from contributors and readers from all countries. In addition to its publication, Allergy also provides abstracting and indexing information. Some of the databases that include Allergy abstracts are Abstracts on Hygiene & Communicable Disease, Academic Search Alumni Edition, AgBiotech News & Information, AGRICOLA Database, Biological Abstracts, PubMed Dietary Supplement Subset, and Global Health, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信