{"title":"Side-Functionalization of Poly(l-methionine) for Ice Control.","authors":"Qingjing Niu, Ke Shang, Huimin Han, Binlin Chen, Kongying Zhu, Lixia Ren, Xiaoyan Yuan","doi":"10.1021/acs.biomac.5c00086","DOIUrl":null,"url":null,"abstract":"<p><p>Controlling ice growth is crucial during the cryopreservation of cells, but the current application of small molecules as cryoprotectants still remains a challenge. Inspired by structures of natural antifreeze (glyco)proteins, in this work, functionalized poly(l-methionine)s (PMets) are synthesized with different side groups including hydroxyl, threonine-mimetic with both methyl and hydroxyl groups (PMet-MOH), zwitterion with carboxyl and sulfonium (PMet-COOH), glycerol, and trehalose pendants. Results suggest that these functionalized PMets tend to self-assemble into 100-300 nm nanoparticles with positive charges in water. The functional structures have a remarkable influence on their ice control properties. It is supposed that PMet-MOH inhibits ice growth possibly through the adsorption mechanism by adjacent methyl and hydroxyl groups, whereas trehalose-tethered PMet can restrict diffusion of water molecules with the strongest ice recrystallization inhibition activity and zwitterionic PMet-COOH promotes ice nucleation obviously. This work offers valuable insight into the development of functional polypeptides as promising biocompatible cryoprotectants.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.5c00086","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Controlling ice growth is crucial during the cryopreservation of cells, but the current application of small molecules as cryoprotectants still remains a challenge. Inspired by structures of natural antifreeze (glyco)proteins, in this work, functionalized poly(l-methionine)s (PMets) are synthesized with different side groups including hydroxyl, threonine-mimetic with both methyl and hydroxyl groups (PMet-MOH), zwitterion with carboxyl and sulfonium (PMet-COOH), glycerol, and trehalose pendants. Results suggest that these functionalized PMets tend to self-assemble into 100-300 nm nanoparticles with positive charges in water. The functional structures have a remarkable influence on their ice control properties. It is supposed that PMet-MOH inhibits ice growth possibly through the adsorption mechanism by adjacent methyl and hydroxyl groups, whereas trehalose-tethered PMet can restrict diffusion of water molecules with the strongest ice recrystallization inhibition activity and zwitterionic PMet-COOH promotes ice nucleation obviously. This work offers valuable insight into the development of functional polypeptides as promising biocompatible cryoprotectants.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.