{"title":"Regulation of Brain Metastatic Breast Cancer Cell Dormancy versus Proliferation on Hyaluronic Acid Hydrogels via Laminin and Laminin-Derived Peptides.","authors":"Kasra Goodarzi, Paromita Sarker, Shreyas S Rao","doi":"10.1021/acsabm.4c01386","DOIUrl":null,"url":null,"abstract":"<p><p>Among the secondary target organs for metastatic breast cancer, brain metastasis is extremely aggressive in nature, resulting in lower survival rates. These metastatic cancer cells have the potential to enter a dormant state in the brain, allowing them to survive for extended time periods. The brain microenvironment plays a key role in controlling the dormant phenotype, yet how various components of this microenvironment influence dormancy is not well understood. In this work, we employed hyaluronic acid (HA)-based hydrogels as a mimetic of the brain tissue environment to study the role of biochemical cues, specifically, the impact of laminin and laminin-derived peptides IKVAV and YIGSR on the regulation of brain metastatic breast cancer cell dormancy versus proliferation. We applied varying protein/peptide concentrations and confirmed functionalization on HA hydrogel surfaces. We then seeded 10,000 cancer cells on the hydrogel surface and cultured them for 5 days. We found that in the presence of laminin or IKVAV, MDA-MB-231Br cells transitioned from a rounded to a spread morphology and exhibited enhanced proliferation as the laminin/IKVAV concentration increased. In contrast, in hydrogels functionalized with YIGSR, these cells maintained a rounded morphology, with no impact on proliferation with varying YIGSR concentrations. We confirmed the involvement of αVβ3 integrin in mediating tumor cell phenotype in hydrogels functionalized with laminin. By evaluating known markers of dormancy and proliferation, we found a direct correlation between the presence of laminin and IKVAV and increased phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK) positivity, along with decreased phosphorylated p38 (p-p38) positivity, while in hydrogels functionalized with YIGSR, the levels of both p-ERK and p-p38 remained unaltered. Finally, we demonstrated that when cells were transferred from IKVAV-deficient to IKVAV-rich hydrogels, the hydrogel induced cellular dormancy was reversible. Collectively, our findings provide insights into how laminin and laminin-derived cues regulate brain metastatic breast cancer cell dormancy versus proliferation.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Among the secondary target organs for metastatic breast cancer, brain metastasis is extremely aggressive in nature, resulting in lower survival rates. These metastatic cancer cells have the potential to enter a dormant state in the brain, allowing them to survive for extended time periods. The brain microenvironment plays a key role in controlling the dormant phenotype, yet how various components of this microenvironment influence dormancy is not well understood. In this work, we employed hyaluronic acid (HA)-based hydrogels as a mimetic of the brain tissue environment to study the role of biochemical cues, specifically, the impact of laminin and laminin-derived peptides IKVAV and YIGSR on the regulation of brain metastatic breast cancer cell dormancy versus proliferation. We applied varying protein/peptide concentrations and confirmed functionalization on HA hydrogel surfaces. We then seeded 10,000 cancer cells on the hydrogel surface and cultured them for 5 days. We found that in the presence of laminin or IKVAV, MDA-MB-231Br cells transitioned from a rounded to a spread morphology and exhibited enhanced proliferation as the laminin/IKVAV concentration increased. In contrast, in hydrogels functionalized with YIGSR, these cells maintained a rounded morphology, with no impact on proliferation with varying YIGSR concentrations. We confirmed the involvement of αVβ3 integrin in mediating tumor cell phenotype in hydrogels functionalized with laminin. By evaluating known markers of dormancy and proliferation, we found a direct correlation between the presence of laminin and IKVAV and increased phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK) positivity, along with decreased phosphorylated p38 (p-p38) positivity, while in hydrogels functionalized with YIGSR, the levels of both p-ERK and p-p38 remained unaltered. Finally, we demonstrated that when cells were transferred from IKVAV-deficient to IKVAV-rich hydrogels, the hydrogel induced cellular dormancy was reversible. Collectively, our findings provide insights into how laminin and laminin-derived cues regulate brain metastatic breast cancer cell dormancy versus proliferation.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.