Anatomically Veridical On-Scalp Sensor Topographies

IF 2.7 4区 医学 Q3 NEUROSCIENCES
Nicholas A. Alexander, Johan Medrano, Robert A. Seymour, Stephanie Mellor, George C. O’Neill, Meaghan E. Spedden, Tim M. Tierney, Eleanor A. Maguire
{"title":"Anatomically Veridical On-Scalp Sensor Topographies","authors":"Nicholas A. Alexander,&nbsp;Johan Medrano,&nbsp;Robert A. Seymour,&nbsp;Stephanie Mellor,&nbsp;George C. O’Neill,&nbsp;Meaghan E. Spedden,&nbsp;Tim M. Tierney,&nbsp;Eleanor A. Maguire","doi":"10.1111/ejn.70060","DOIUrl":null,"url":null,"abstract":"<p>When working with sensor-level data recorded using on-scalp neuroimaging methods such as electroencephalography (EEG), it is common practice to use two-dimensional (2D) representations of sensor positions to aid interpretation. Positioning of sensors relative to anatomy, as in the classic 10–20 system of EEG electrode placement, enables the use of 2D topographies that are familiar to many researchers and clinicians. However, when using another increasingly popular on-scalp neuroimaging method, optically pumped magnetometer–based magnetoencephalography (OP-MEG), bespoke sensor arrays are much more common, and these are not prepared according to any standard principle. Consequently, polar projection is often used to produce individual sensor topographies that are not directly related to anatomy and cannot be averaged across people simply. Given the current proliferation of OP-MEG facilities globally, this issue will become an increasing hindrance when visualising OP-MEG data, particularly for group studies. To address this problem, we adapted and extended the 10–20 system to build a flexible, anatomical projection method applied to digitised head shape, fiducials and sensor positions. We demonstrate that the method maintains spatially veridical representations across individuals improving on standard polar projections at varying OPM sensor array densities. By applying our projection method, the benefits of anatomically veridical 2D topographies can now be enjoyed when visualising data, such as those from OP-MEG, regardless of variation in sensor placement as in sparse or focal arrays.</p>","PeriodicalId":11993,"journal":{"name":"European Journal of Neuroscience","volume":"61 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejn.70060","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejn.70060","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

When working with sensor-level data recorded using on-scalp neuroimaging methods such as electroencephalography (EEG), it is common practice to use two-dimensional (2D) representations of sensor positions to aid interpretation. Positioning of sensors relative to anatomy, as in the classic 10–20 system of EEG electrode placement, enables the use of 2D topographies that are familiar to many researchers and clinicians. However, when using another increasingly popular on-scalp neuroimaging method, optically pumped magnetometer–based magnetoencephalography (OP-MEG), bespoke sensor arrays are much more common, and these are not prepared according to any standard principle. Consequently, polar projection is often used to produce individual sensor topographies that are not directly related to anatomy and cannot be averaged across people simply. Given the current proliferation of OP-MEG facilities globally, this issue will become an increasing hindrance when visualising OP-MEG data, particularly for group studies. To address this problem, we adapted and extended the 10–20 system to build a flexible, anatomical projection method applied to digitised head shape, fiducials and sensor positions. We demonstrate that the method maintains spatially veridical representations across individuals improving on standard polar projections at varying OPM sensor array densities. By applying our projection method, the benefits of anatomically veridical 2D topographies can now be enjoyed when visualising data, such as those from OP-MEG, regardless of variation in sensor placement as in sparse or focal arrays.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Neuroscience
European Journal of Neuroscience 医学-神经科学
CiteScore
7.10
自引率
5.90%
发文量
305
审稿时长
3.5 months
期刊介绍: EJN is the journal of FENS and supports the international neuroscientific community by publishing original high quality research articles and reviews in all fields of neuroscience. In addition, to engage with issues that are of interest to the science community, we also publish Editorials, Meetings Reports and Neuro-Opinions on topics that are of current interest in the fields of neuroscience research and training in science. We have recently established a series of ‘Profiles of Women in Neuroscience’. Our goal is to provide a vehicle for publications that further the understanding of the structure and function of the nervous system in both health and disease and to provide a vehicle to engage the neuroscience community. As the official journal of FENS, profits from the journal are re-invested in the neuroscientific community through the activities of FENS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信