Experimental Studies of the Effects of Recoating on Fire Protection Properties of Old and New Layers of Intumescent Coatings for Steel Elements

IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
L. L. Wang, X. Zhu, T. J. Liu
{"title":"Experimental Studies of the Effects of Recoating on Fire Protection Properties of Old and New Layers of Intumescent Coatings for Steel Elements","authors":"L. L. Wang,&nbsp;X. Zhu,&nbsp;T. J. Liu","doi":"10.1002/fam.3271","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper presents the results of experimental studies investigating the effects of recoating on fire protection properties of composite layers of intumescent coatings for steel elements. Intumescent coatings, both with and without topcoats, were applied to steel plates. The samples were subjected to different cycles of hydrothermal aging before recoating. The composite layers of the existing and new coatings were then tested under fire. Comparisons of the morphological structures of the carbonaceous char revealed that the existing coating had little effect on the expansion properties of the new coating. However, the new coating reduced the expansion ratio of the existing coating. The thermal resistance of the existing coating decreased with the increasing thickness of the new coating. For specimens with a new coating 1.0 mm thick, the thermal resistance of the existing coating, after even moderate environmental exposure, was &lt; 20% of the total and can be ignored. Contributions from the existing coating may be considered when specifying the thickness of the new coating if the new coating thickness is small and the existing coating is subjected to moderate environmental aging. Recoating with a different type of intumescent coating from the existing one appeared to provide better fire protection performance than using the same type.</p>\n </div>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"49 3","pages":"280-296"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire and Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fam.3271","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the results of experimental studies investigating the effects of recoating on fire protection properties of composite layers of intumescent coatings for steel elements. Intumescent coatings, both with and without topcoats, were applied to steel plates. The samples were subjected to different cycles of hydrothermal aging before recoating. The composite layers of the existing and new coatings were then tested under fire. Comparisons of the morphological structures of the carbonaceous char revealed that the existing coating had little effect on the expansion properties of the new coating. However, the new coating reduced the expansion ratio of the existing coating. The thermal resistance of the existing coating decreased with the increasing thickness of the new coating. For specimens with a new coating 1.0 mm thick, the thermal resistance of the existing coating, after even moderate environmental exposure, was < 20% of the total and can be ignored. Contributions from the existing coating may be considered when specifying the thickness of the new coating if the new coating thickness is small and the existing coating is subjected to moderate environmental aging. Recoating with a different type of intumescent coating from the existing one appeared to provide better fire protection performance than using the same type.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Fire and Materials
Fire and Materials 工程技术-材料科学:综合
CiteScore
4.60
自引率
5.30%
发文量
72
审稿时长
3 months
期刊介绍: Fire and Materials is an international journal for scientific and technological communications directed at the fire properties of materials and the products into which they are made. This covers all aspects of the polymer field and the end uses where polymers find application; the important developments in the fields of natural products - wood and cellulosics; non-polymeric materials - metals and ceramics; as well as the chemistry and industrial applications of fire retardant chemicals. Contributions will be particularly welcomed on heat release; properties of combustion products - smoke opacity, toxicity and corrosivity; modelling and testing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信