Witnessing Entanglement and Quantum Correlations in Condensed Matter: A Review

IF 4.4 Q1 OPTICS
Pontus Laurell, Allen Scheie, Elbio Dagotto, D. Alan Tennant
{"title":"Witnessing Entanglement and Quantum Correlations in Condensed Matter: A Review","authors":"Pontus Laurell,&nbsp;Allen Scheie,&nbsp;Elbio Dagotto,&nbsp;D. Alan Tennant","doi":"10.1002/qute.202400196","DOIUrl":null,"url":null,"abstract":"<p>The detection and certification of entanglement and quantum correlations in materials is of fundamental and far-reaching importance, and has seen significant recent progress. It impacts both the understanding of the basic science of quantum many-body phenomena as well as the identification of systems suitable for novel technologies. Frameworks suitable to condensed matter that connect measurements to entanglement and coherence have been developed in the context of quantum information theory. These take the form of entanglement witnesses and quantum correlation measures.</p><p>The underlying theory of these quantities, their relation to condensed matter experimental techniques, and their application to real materials are comprehensively reviewed. In addition, their usage in, e.g., protocols, the relative advantages and disadvantages of witnesses and measures, and future prospects in, e.g., correlated electrons, entanglement dynamics, and entangled spectroscopic probes, are presented. Consideration is given to the interdisciplinary nature of this emerging research and substantial ongoing progress by providing an accessible and practical treatment from fundamentals to application. Particular emphasis is placed on quantities accessible to collective measurements, including by susceptibility and spectroscopic techniques. This includes the magnetic susceptibility witness, one-tangle, concurrence and two-tangle, two-site quantum discord, and quantum coherence measures such as the quantum Fisher information.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 3","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202400196","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The detection and certification of entanglement and quantum correlations in materials is of fundamental and far-reaching importance, and has seen significant recent progress. It impacts both the understanding of the basic science of quantum many-body phenomena as well as the identification of systems suitable for novel technologies. Frameworks suitable to condensed matter that connect measurements to entanglement and coherence have been developed in the context of quantum information theory. These take the form of entanglement witnesses and quantum correlation measures.

The underlying theory of these quantities, their relation to condensed matter experimental techniques, and their application to real materials are comprehensively reviewed. In addition, their usage in, e.g., protocols, the relative advantages and disadvantages of witnesses and measures, and future prospects in, e.g., correlated electrons, entanglement dynamics, and entangled spectroscopic probes, are presented. Consideration is given to the interdisciplinary nature of this emerging research and substantial ongoing progress by providing an accessible and practical treatment from fundamentals to application. Particular emphasis is placed on quantities accessible to collective measurements, including by susceptibility and spectroscopic techniques. This includes the magnetic susceptibility witness, one-tangle, concurrence and two-tangle, two-site quantum discord, and quantum coherence measures such as the quantum Fisher information.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信