{"title":"Discrete and Parallel Frequency-Bin Entanglement Generation from Quantum Frequency Comb","authors":"Chi Lu, Xiaoyu Wu, Wenjun Wen, Xiao-song Ma","doi":"10.1002/qute.202400229","DOIUrl":null,"url":null,"abstract":"<p>Photons’ frequency degree of freedom is promising to realize large-scale quantum information processing. Quantum frequency combs (QFCs) generated in integrated nonlinear microresonators can produce multiple frequency modes with narrow linewidth. Here, polarization-entangled QFCs are utilized to generate discrete frequency-bin entangled states. Fourteen pairs of polarization-entangled photons with different frequencies are simultaneously transformed into frequency-bin entangled states. The characteristic of frequency-bin entanglement is demonstrated by Hong-Ou-Mandel interference, which can be performed with single or multiple frequency pairs in parallel. This work paves the way for harnessing large-scale frequency-bin entanglement and converting between different degrees of freedom in quantum information processing.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 3","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Photons’ frequency degree of freedom is promising to realize large-scale quantum information processing. Quantum frequency combs (QFCs) generated in integrated nonlinear microresonators can produce multiple frequency modes with narrow linewidth. Here, polarization-entangled QFCs are utilized to generate discrete frequency-bin entangled states. Fourteen pairs of polarization-entangled photons with different frequencies are simultaneously transformed into frequency-bin entangled states. The characteristic of frequency-bin entanglement is demonstrated by Hong-Ou-Mandel interference, which can be performed with single or multiple frequency pairs in parallel. This work paves the way for harnessing large-scale frequency-bin entanglement and converting between different degrees of freedom in quantum information processing.