Wavelength Stabilization of Entangled Biphotons Using Dynamic Temperature Compensation for Quantum Interference Applications

IF 4.4 Q1 OPTICS
Yuting Liu, Huibo Hong, Xiao Xiang, Runai Quan, Xinghua Li, Tao Liu, Mingtao Cao, Shougang Zhang, Ruifang Dong
{"title":"Wavelength Stabilization of Entangled Biphotons Using Dynamic Temperature Compensation for Quantum Interference Applications","authors":"Yuting Liu,&nbsp;Huibo Hong,&nbsp;Xiao Xiang,&nbsp;Runai Quan,&nbsp;Xinghua Li,&nbsp;Tao Liu,&nbsp;Mingtao Cao,&nbsp;Shougang Zhang,&nbsp;Ruifang Dong","doi":"10.1002/qute.202400305","DOIUrl":null,"url":null,"abstract":"<p>In this paper, a dynamic temperature compensation method is presented to stabilize the wavelength of the entangled biphoton source, which is generated on spontaneous parametric down-conversion from a magnesium oxide doped periodically poled lithium niobate waveguide. Utilizing the dispersive Fourier transformation technique, the photon wavelength variation is monitored in case of conventional static temperature control, revealing a long-term wavelength drift up to 556.8 pm over a 14-h measurement period. A Hong-Ou-Mandel (HOM) interferometer is constructed to assess the impact on quantum applications, showing a decrease in visibility from 95.5% to 69.4%. To address this issue, a digital proportional-integral-differential algorithm is implemented to dynamically compensate the working temperature variation of the waveguide, thereby instantly stabilizing the wavelength to a peak-to-peak fluctuation of +138.05 pm/-127.61 pm with the standard deviation being 30.49 pm. The wavelength stability shows more than a hundredfold enhancement in terms of Allan deviation, reaching <span></span><math>\n <semantics>\n <mrow>\n <mn>1.67</mn>\n <mo>×</mo>\n <msup>\n <mn>10</mn>\n <mrow>\n <mo>−</mo>\n <mn>7</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$1.67 \\times {{10}^{ - 7}}$</annotation>\n </semantics></math> at an averaging time of 10000 s. With the dynamic control in operation, the HOM interference visibility turns to stable at 96.1% ± 0.6%. The method provides a simple and accessible solution for precisely controlling and stabilizing the wavelength of entangled biphotons, thus improving performance in various quantum information processing applications.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 3","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a dynamic temperature compensation method is presented to stabilize the wavelength of the entangled biphoton source, which is generated on spontaneous parametric down-conversion from a magnesium oxide doped periodically poled lithium niobate waveguide. Utilizing the dispersive Fourier transformation technique, the photon wavelength variation is monitored in case of conventional static temperature control, revealing a long-term wavelength drift up to 556.8 pm over a 14-h measurement period. A Hong-Ou-Mandel (HOM) interferometer is constructed to assess the impact on quantum applications, showing a decrease in visibility from 95.5% to 69.4%. To address this issue, a digital proportional-integral-differential algorithm is implemented to dynamically compensate the working temperature variation of the waveguide, thereby instantly stabilizing the wavelength to a peak-to-peak fluctuation of +138.05 pm/-127.61 pm with the standard deviation being 30.49 pm. The wavelength stability shows more than a hundredfold enhancement in terms of Allan deviation, reaching 1.67 × 10 7 $1.67 \times {{10}^{ - 7}}$ at an averaging time of 10000 s. With the dynamic control in operation, the HOM interference visibility turns to stable at 96.1% ± 0.6%. The method provides a simple and accessible solution for precisely controlling and stabilizing the wavelength of entangled biphotons, thus improving performance in various quantum information processing applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信