Correction to Topological Properties of a Non-Hermitian Quasi-1D Chain with a Flat Band

IF 4.4 Q1 OPTICS
{"title":"Correction to Topological Properties of a Non-Hermitian Quasi-1D Chain with a Flat Band","authors":"","doi":"10.1002/qute.202400348","DOIUrl":null,"url":null,"abstract":"<p>C. Martínez-Strasser, M. A. J. Herrera, A. García-Etxarri, G. Palumbo, F. K. Kunst, D. Bercioux, Topological Properties of a Non-Hermitian Quasi-1D Chain with a Flat Band. <i>Adv Quantum Technol</i>. <b>2024</b>, <i>7</i>, 2300225.</p><p>In this correction to the article titled “Topological Properties of a Non-Hermitian Quasi-1D Chain with a Flat Band” we show that the previously claimed non-Hermitian skin effect found in the non-Hermitian diamond chain in configuration B (DCB) is mistaken. The observed accumulation of the eigenstates towards the edges in the representation used in Figure 5 results from an incorrect selection of the basis for the flat band eigenstates in the <i>Wolfram Language</i> (WL).</p><p>In general, states in the flat bands are defined as a linear combination of compact localized states (CLSs). However, the WL is unable to determine this basis. As a result, summing the squared amplitudes on each site leads to an accumulation that appears to increase in weight towards the boundaries (see Figure A(a)). Whereas a correct CLS base does not induce this accumulation - see Figure A(b).</p><p>As a result, Figure 5 and Figure 9 are incorrect. Replacement figures are shown in Figures B and D, respectively, below.</p><p>Additionally, Figure D shows the correct representation of the sum of amplitudes at each site of the rotated DCB model presenting real non-reciprocal couplings (refer to Figure 8b in the article). In this model, the right and left eigenvectors are identical. Notably, this model does not exhibit the non-Hermitian skin effect, neither on the sites producing the flat band nor on the Hermitian SSH chain coupled in a non-Hermitian fashion to the flat band sites (see Figure E).</p><p>The authors acknowledge useful discussions with Julius Gohsrich for giving insight to this matter.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 3","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202400348","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

C. Martínez-Strasser, M. A. J. Herrera, A. García-Etxarri, G. Palumbo, F. K. Kunst, D. Bercioux, Topological Properties of a Non-Hermitian Quasi-1D Chain with a Flat Band. Adv Quantum Technol. 2024, 7, 2300225.

In this correction to the article titled “Topological Properties of a Non-Hermitian Quasi-1D Chain with a Flat Band” we show that the previously claimed non-Hermitian skin effect found in the non-Hermitian diamond chain in configuration B (DCB) is mistaken. The observed accumulation of the eigenstates towards the edges in the representation used in Figure 5 results from an incorrect selection of the basis for the flat band eigenstates in the Wolfram Language (WL).

In general, states in the flat bands are defined as a linear combination of compact localized states (CLSs). However, the WL is unable to determine this basis. As a result, summing the squared amplitudes on each site leads to an accumulation that appears to increase in weight towards the boundaries (see Figure A(a)). Whereas a correct CLS base does not induce this accumulation - see Figure A(b).

As a result, Figure 5 and Figure 9 are incorrect. Replacement figures are shown in Figures B and D, respectively, below.

Additionally, Figure D shows the correct representation of the sum of amplitudes at each site of the rotated DCB model presenting real non-reciprocal couplings (refer to Figure 8b in the article). In this model, the right and left eigenvectors are identical. Notably, this model does not exhibit the non-Hermitian skin effect, neither on the sites producing the flat band nor on the Hermitian SSH chain coupled in a non-Hermitian fashion to the flat band sites (see Figure E).

The authors acknowledge useful discussions with Julius Gohsrich for giving insight to this matter.

Abstract Image

平面带非厄米拟一维链拓扑性质的修正
C. Martínez-Strasser, M. a . J. Herrera, a . García-Etxarri, G. Palumbo, F. K. Kunst, D. Bercioux,具有平坦带的非埃米准一维链的拓扑性质。光子学报,2004,7,2300225。在这篇题为“带平带的非厄米准一维链的拓扑性质”的文章的更正中,我们证明了先前声称的在构型B (DCB)的非厄米钻石链中发现的非厄米趋肤效应是错误的。在图5中使用的表示中,观察到的特征态向边缘的积累是由于Wolfram语言(WL)中平坦带特征态的基选择错误造成的。一般来说,平带中的态被定义为紧定局域态(cls)的线性组合。然而,WL无法确定这一基础。结果,将每个位置的振幅平方相加,就会得到一个向边界方向增加重量的累积(见图a (a))。然而,正确的CLS基础不会引起这种积累(见图a (b))。因此,图5和图9是不正确的。替换数字分别见下文图B和图D。此外,图D显示了旋转DCB模型每个位置的振幅和的正确表示,呈现出真正的非互反耦合(参见文章中的图8b)。在这个模型中,左右特征向量是相同的。值得注意的是,该模型没有显示出非厄米集肤效应,无论是在产生平带的位点上,还是在以非厄米方式耦合到平带位点上的厄米SSH链上(见图E)。作者承认与Julius Gohsrich的有益讨论有助于深入了解这一问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信