Mem-Transistor-Based Gaussian Error–Generating Hardware for Post-Quantum Cryptography Applications

IF 4.4 Q1 OPTICS
Moon-Seok Kim, Shania Rehman, Muhammad Farooq Khan, Sungho Kim
{"title":"Mem-Transistor-Based Gaussian Error–Generating Hardware for Post-Quantum Cryptography Applications","authors":"Moon-Seok Kim,&nbsp;Shania Rehman,&nbsp;Muhammad Farooq Khan,&nbsp;Sungho Kim","doi":"10.1002/qute.202400394","DOIUrl":null,"url":null,"abstract":"<p>Quantum computing can potentially hack the information encrypted by traditional cryptographic systems, leading to the development of post-quantum cryptography (PQC) to counteract this threat. The key principle behind PQC is the “learning with errors” problem, where intentional errors make encrypted information unpredictable. Intentional errors refer to Gaussian distributed data. However, implementing Gaussian distributed errors is challenging owing to computational and memory overhead. Therefore, this study proposes a Gaussian error sampler that employs the intrinsic Gaussian properties of nanometer-scale semiconductor devices. The proposed Gaussian error sampler significantly reduces computational and memory overhead. This work comprehensively evaluates the effectiveness of the proposed device by conducting statistical normality tests and generating quantile–quantile plots. The optimal programming voltage is identified to be −5.25 V, and the experimental results confirmed the Gaussian distribution of error data generated by the proposed module, aligning closely with software-generated Gaussian distributions and distinct from uniform random distributions.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 3","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202400394","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum computing can potentially hack the information encrypted by traditional cryptographic systems, leading to the development of post-quantum cryptography (PQC) to counteract this threat. The key principle behind PQC is the “learning with errors” problem, where intentional errors make encrypted information unpredictable. Intentional errors refer to Gaussian distributed data. However, implementing Gaussian distributed errors is challenging owing to computational and memory overhead. Therefore, this study proposes a Gaussian error sampler that employs the intrinsic Gaussian properties of nanometer-scale semiconductor devices. The proposed Gaussian error sampler significantly reduces computational and memory overhead. This work comprehensively evaluates the effectiveness of the proposed device by conducting statistical normality tests and generating quantile–quantile plots. The optimal programming voltage is identified to be −5.25 V, and the experimental results confirmed the Gaussian distribution of error data generated by the proposed module, aligning closely with software-generated Gaussian distributions and distinct from uniform random distributions.

Abstract Image

后量子密码应用中基于mems晶体管的高斯误差产生硬件
量子计算可以潜在地破解由传统密码系统加密的信息,从而导致后量子密码学(PQC)的发展来抵消这种威胁。PQC背后的关键原则是“从错误中学习”问题,其中故意错误使加密信息不可预测。故意错误指的是高斯分布数据。然而,由于计算和内存开销,实现高斯分布误差是具有挑战性的。因此,本研究提出了一种利用纳米级半导体器件固有高斯特性的高斯误差采样器。所提出的高斯误差采样器显著降低了计算和内存开销。这项工作通过进行统计正态性检验和生成分位数-分位数图来全面评估所提出设备的有效性。优选的编程电压为- 5.25 V,实验结果证实了该模块生成的误差数据符合高斯分布,与软件生成的高斯分布非常接近,不同于均匀随机分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信