{"title":"Assessing Channel Bank-Height Adjustments and Flood Frequency Trends in a Dynamic Channel-Levee Evolution Model","authors":"J. Han, W. Kim, D. A. Edmonds","doi":"10.1029/2024JF008137","DOIUrl":null,"url":null,"abstract":"<p>Natural levees form through sediment delivery from channels, dispersal onto floodplains, and storage at channel margins. When levees breach, they release water and sediment onto the floodplain, occasionally causing river avulsions. Despite their significance, levee growth remains poorly understood, and no existing models capture the dynamic channel-levee evolution systems. A common assumption is that levee and channel bed aggradation rates are coupled or equal; however, this cannot be true because levees do not accumulate everywhere along aggrading channel belts. Using a one-dimensional numerical model, we investigate levee growth decoupled from channel bed aggradation under flood scenarios wherein the flooded level: (a) exceeds the levee crest height (i.e., front loading); or (b) is lower than the levee crest partially inundating distal levee deposits (i.e., back loading). Front loading events initially aggrade the levee crest, which confines the channel, increases bankfull depth, and reduces flooding. During confinement, levee growth restricts flooding, and minor back loading events are more common. Over this period, the channel bed aggrades until bankfull depth decreases sufficiently to trigger larger floods. This channel-releasing process increases flood likelihood and enhances overbank accumulation, promoting front loading and re-confining the channel. Our findings suggest aggradational channels may experience confined-release phases characterized by episodic levee growth and fluctuating bankfull depth. Rapid in-channel aggradation increases flood frequency and variability with more confined-release cycles. These results imply that river avulsions and associated floods might preferentially occur when the channel bed aggrades faster than adjacent levees, whereby the channel becomes shallower and destabilized.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"130 3","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF008137","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Earth Surface","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JF008137","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Natural levees form through sediment delivery from channels, dispersal onto floodplains, and storage at channel margins. When levees breach, they release water and sediment onto the floodplain, occasionally causing river avulsions. Despite their significance, levee growth remains poorly understood, and no existing models capture the dynamic channel-levee evolution systems. A common assumption is that levee and channel bed aggradation rates are coupled or equal; however, this cannot be true because levees do not accumulate everywhere along aggrading channel belts. Using a one-dimensional numerical model, we investigate levee growth decoupled from channel bed aggradation under flood scenarios wherein the flooded level: (a) exceeds the levee crest height (i.e., front loading); or (b) is lower than the levee crest partially inundating distal levee deposits (i.e., back loading). Front loading events initially aggrade the levee crest, which confines the channel, increases bankfull depth, and reduces flooding. During confinement, levee growth restricts flooding, and minor back loading events are more common. Over this period, the channel bed aggrades until bankfull depth decreases sufficiently to trigger larger floods. This channel-releasing process increases flood likelihood and enhances overbank accumulation, promoting front loading and re-confining the channel. Our findings suggest aggradational channels may experience confined-release phases characterized by episodic levee growth and fluctuating bankfull depth. Rapid in-channel aggradation increases flood frequency and variability with more confined-release cycles. These results imply that river avulsions and associated floods might preferentially occur when the channel bed aggrades faster than adjacent levees, whereby the channel becomes shallower and destabilized.