Plasma-delay studies on heavy ion detection using PIPS at the LOHENGRIN recoil separator

IF 2.6 3区 物理与天体物理 Q2 PHYSICS, NUCLEAR
Ana M. Gómez L., Ali Al-Adili, Diego Tarrío, Andreas Solders, Zhihao Gao, Alf Göök, Stephan Pomp, André Poussette, Samuel Bennett, Yung Hee Kim, Ulli Köster, Andreas Oberstedt, Gavin Smith, Nikolay V. Sosnin, Stephan Oberstedt
{"title":"Plasma-delay studies on heavy ion detection using PIPS at the LOHENGRIN recoil separator","authors":"Ana M. Gómez L.,&nbsp;Ali Al-Adili,&nbsp;Diego Tarrío,&nbsp;Andreas Solders,&nbsp;Zhihao Gao,&nbsp;Alf Göök,&nbsp;Stephan Pomp,&nbsp;André Poussette,&nbsp;Samuel Bennett,&nbsp;Yung Hee Kim,&nbsp;Ulli Köster,&nbsp;Andreas Oberstedt,&nbsp;Gavin Smith,&nbsp;Nikolay V. Sosnin,&nbsp;Stephan Oberstedt","doi":"10.1140/epja/s10050-025-01509-5","DOIUrl":null,"url":null,"abstract":"<div><p>The VERDI fission spectrometer is designed to measure fragment velocities and kinetic energies to achieve high-precision yield measurements. It consists of two time-of-flight (TOF) sections, each hosting a micro-channel plate (MCP) and up to 32 passivated implanted planar silicon (PIPS) detectors. The main challenge to achieve accurate fragment velocities is the so-called plasma delay time (PDT) phenomena in the PIPS detectors. In this work, we present a dedicated experimental campaign at the LOHENGRIN fission-fragment recoil separator, to solve the pending PDT challenges. The PDT effect was systematically investigated, as a function of mass and energy, using a dedicated time-of-flight setup. In addition, the pulse height defect (PHD) was determined simultaneously. The studies were conducted for five PIPS detectors, in energies and mass numbers ranging from 20 to 110 MeV and A = 85 to 149, respectively. Using digital signal processing, an excellent timing resolution was achieved, reaching as low as 60 ps (one <span>\\(\\sigma \\)</span>) for the heavy ions. The PDT revealed a strong positive correlation with the ion energy and a weak negative correlation with the mass. The experimental PDT values determined from five detectors confirm a consistent systematic behavior with respect to mass and energy. Some systematic discrepancies were exhibited by two detectors, possibly due to the use of different pre-amplification chains. The PDT measurements ranged between 1 and 3.5 ns, for heavy ions relative to <span>\\(\\alpha \\)</span>-particles. The PHD values showed also a strong correlation with the ion energy, and moreover with the ion mass. The PHD for heavy ions was found to range between 2 and 8 MeV, relative to <span>\\(\\alpha \\)</span>-particles. Finally, a two-dimensional parameterisation was developed to model the experimental PDT data, as a function of mass and energy. This new model, which is valid in the fission fragment mass and energy regime, will be of benefit for heavy-ion velocity measurements, using silicon detectors, as done in VERDI.</p></div>","PeriodicalId":786,"journal":{"name":"The European Physical Journal A","volume":"61 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epja/s10050-025-01509-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epja/s10050-025-01509-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

The VERDI fission spectrometer is designed to measure fragment velocities and kinetic energies to achieve high-precision yield measurements. It consists of two time-of-flight (TOF) sections, each hosting a micro-channel plate (MCP) and up to 32 passivated implanted planar silicon (PIPS) detectors. The main challenge to achieve accurate fragment velocities is the so-called plasma delay time (PDT) phenomena in the PIPS detectors. In this work, we present a dedicated experimental campaign at the LOHENGRIN fission-fragment recoil separator, to solve the pending PDT challenges. The PDT effect was systematically investigated, as a function of mass and energy, using a dedicated time-of-flight setup. In addition, the pulse height defect (PHD) was determined simultaneously. The studies were conducted for five PIPS detectors, in energies and mass numbers ranging from 20 to 110 MeV and A = 85 to 149, respectively. Using digital signal processing, an excellent timing resolution was achieved, reaching as low as 60 ps (one \(\sigma \)) for the heavy ions. The PDT revealed a strong positive correlation with the ion energy and a weak negative correlation with the mass. The experimental PDT values determined from five detectors confirm a consistent systematic behavior with respect to mass and energy. Some systematic discrepancies were exhibited by two detectors, possibly due to the use of different pre-amplification chains. The PDT measurements ranged between 1 and 3.5 ns, for heavy ions relative to \(\alpha \)-particles. The PHD values showed also a strong correlation with the ion energy, and moreover with the ion mass. The PHD for heavy ions was found to range between 2 and 8 MeV, relative to \(\alpha \)-particles. Finally, a two-dimensional parameterisation was developed to model the experimental PDT data, as a function of mass and energy. This new model, which is valid in the fission fragment mass and energy regime, will be of benefit for heavy-ion velocity measurements, using silicon detectors, as done in VERDI.

求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal A
The European Physical Journal A 物理-物理:核物理
CiteScore
5.00
自引率
18.50%
发文量
216
审稿时长
3-8 weeks
期刊介绍: Hadron Physics Hadron Structure Hadron Spectroscopy Hadronic and Electroweak Interactions of Hadrons Nonperturbative Approaches to QCD Phenomenological Approaches to Hadron Physics Nuclear and Quark Matter Heavy-Ion Collisions Phase Diagram of the Strong Interaction Hard Probes Quark-Gluon Plasma and Hadronic Matter Relativistic Transport and Hydrodynamics Compact Stars Nuclear Physics Nuclear Structure and Reactions Few-Body Systems Radioactive Beams Electroweak Interactions Nuclear Astrophysics Article Categories Letters (Open Access) Regular Articles New Tools and Techniques Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信