Enhanced color density from high-viscosity inkjet inks

IF 2.3 4区 材料科学 Q2 CHEMISTRY, APPLIED
Chris Phillips, Andrew Claypole, Ben Clifford, Davide Deganello
{"title":"Enhanced color density from high-viscosity inkjet inks","authors":"Chris Phillips,&nbsp;Andrew Claypole,&nbsp;Ben Clifford,&nbsp;Davide Deganello","doi":"10.1007/s11998-024-01001-7","DOIUrl":null,"url":null,"abstract":"<div><p>Inkjet printing inks are typically limited to low viscosities, employing highly dilute inks with low pigment loading compared with inks for other printing processes. This reduces color intensity, limits productivity, and requires higher drying energy. This study compares standard-viscosity graphic inkjet inks (~13 mPa.s shear viscosity) with higher-viscosity inkjet inks (~60 mPa.s), traditionally considered outside the normal jetting range, for print outcomes on corrugated cardboard with both white coated and brown uncoated liners. Higher-viscosity inks imparted greater color density to the print; this was assessed as being due to both the inherently higher viscosity of the ink reducing penetration into the substrate and the higher pigment loading capable of being contained within these inks. While standard-viscosity inks tended to plateau in color intensity as ink coverage was increased, higher-viscosity inks could increase in intensity throughout the entire coverage range on coated white liner. This effect was dependent on the substrate, with the coated white liner exhibiting up to a 67% increase in maximum color density but the uncoated brown liner showing up to a 13% increase. It is envisaged that wider adoption of higher-viscosity inks can increase both color intensity and printing speed, thus making inkjet more competitive with conventional printing processes.</p></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"22 2","pages":"715 - 726"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11998-024-01001-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Coatings Technology and Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11998-024-01001-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Inkjet printing inks are typically limited to low viscosities, employing highly dilute inks with low pigment loading compared with inks for other printing processes. This reduces color intensity, limits productivity, and requires higher drying energy. This study compares standard-viscosity graphic inkjet inks (~13 mPa.s shear viscosity) with higher-viscosity inkjet inks (~60 mPa.s), traditionally considered outside the normal jetting range, for print outcomes on corrugated cardboard with both white coated and brown uncoated liners. Higher-viscosity inks imparted greater color density to the print; this was assessed as being due to both the inherently higher viscosity of the ink reducing penetration into the substrate and the higher pigment loading capable of being contained within these inks. While standard-viscosity inks tended to plateau in color intensity as ink coverage was increased, higher-viscosity inks could increase in intensity throughout the entire coverage range on coated white liner. This effect was dependent on the substrate, with the coated white liner exhibiting up to a 67% increase in maximum color density but the uncoated brown liner showing up to a 13% increase. It is envisaged that wider adoption of higher-viscosity inks can increase both color intensity and printing speed, thus making inkjet more competitive with conventional printing processes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Coatings Technology and Research
Journal of Coatings Technology and Research 工程技术-材料科学:膜
CiteScore
4.30
自引率
8.70%
发文量
130
审稿时长
2.5 months
期刊介绍: Journal of Coatings Technology and Research (JCTR) is a forum for the exchange of research, experience, knowledge and ideas among those with a professional interest in the science, technology and manufacture of functional, protective and decorative coatings including paints, inks and related coatings and their raw materials, and similar topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信