{"title":"Bacillus safensis M01 reversed the inflammatory injury of mice jejunum caused by enterotoxigenic Escherichia coli K88","authors":"Xin-Wen Hou, Jinxin Meng, Xiao-Tong Chen, Ji-Xin Zhao, Kai-Meng Shang, Yong-Jie Wei, Rui Liu","doi":"10.1007/s00203-025-04287-2","DOIUrl":null,"url":null,"abstract":"<div><p>Enterotoxigenic <i>Escherichia coli</i> (ETEC) is a major pathogen causing neonatal diarrhea in livestock, with antibiotics commonly used for control. However, antibiotic overuse has led to issues such as residues and bacterial resistance, underscoring the need for alternative prevention strategies. This study investigated the potential of <i>Bacillus safensis</i> (<i>B. safensis</i>) M01, isolated from healthy porcine feces in Shandong, China, to prevent ETEC infections. M01 exhibited over 80% inhibition of ETEC in vitro and was selected for further analysis. Pre-treatment of IPEC-J2 cells with M01 significantly reduced ETEC-induced cellular damage, enhanced cell viability, and inhibited bacterial adhesion. It modulated inflammatory responses by down-regulating IL-1β and TNF-α while up-regulating IL-10. Additionally, M01 promoted the expression of tight junction proteins, including Claudin-1, Occludin, and ZO-1. In the C57BL/6 mouse model, pre-feeding with M01 for 14 days improved jejunal injury caused by ETEC, as indicated by increased villus height/crypt depth ratios. Similar to in vitro findings, M01 reduced IL-1β and TNF-α expression while enhancing tight junction protein levels. These results suggest that <i>B. safensis</i> M01 is a promising probiotic candidate for preventing ETEC infections in livestock, offering an effective alternative to antibiotics.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"207 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00203-025-04287-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major pathogen causing neonatal diarrhea in livestock, with antibiotics commonly used for control. However, antibiotic overuse has led to issues such as residues and bacterial resistance, underscoring the need for alternative prevention strategies. This study investigated the potential of Bacillus safensis (B. safensis) M01, isolated from healthy porcine feces in Shandong, China, to prevent ETEC infections. M01 exhibited over 80% inhibition of ETEC in vitro and was selected for further analysis. Pre-treatment of IPEC-J2 cells with M01 significantly reduced ETEC-induced cellular damage, enhanced cell viability, and inhibited bacterial adhesion. It modulated inflammatory responses by down-regulating IL-1β and TNF-α while up-regulating IL-10. Additionally, M01 promoted the expression of tight junction proteins, including Claudin-1, Occludin, and ZO-1. In the C57BL/6 mouse model, pre-feeding with M01 for 14 days improved jejunal injury caused by ETEC, as indicated by increased villus height/crypt depth ratios. Similar to in vitro findings, M01 reduced IL-1β and TNF-α expression while enhancing tight junction protein levels. These results suggest that B. safensis M01 is a promising probiotic candidate for preventing ETEC infections in livestock, offering an effective alternative to antibiotics.
期刊介绍:
Research papers must make a significant and original contribution to
microbiology and be of interest to a broad readership. The results of any
experimental approach that meets these objectives are welcome, particularly
biochemical, molecular genetic, physiological, and/or physical investigations into
microbial cells and their interactions with their environments, including their eukaryotic hosts.
Mini-reviews in areas of special topical interest and papers on medical microbiology, ecology and systematics, including description of novel taxa, are also published.
Theoretical papers and those that report on the analysis or ''mining'' of data are
acceptable in principle if new information, interpretations, or hypotheses
emerge.