Hanbiao Zhu, Shuying Wang, Pengfei Liu, Huanhuan Feng, Tongming Qu, Hemei Sun, Di Yan
{"title":"A strength-based clogging risk assessment strategy for mechanized tunneling","authors":"Hanbiao Zhu, Shuying Wang, Pengfei Liu, Huanhuan Feng, Tongming Qu, Hemei Sun, Di Yan","doi":"10.1007/s10064-025-04198-y","DOIUrl":null,"url":null,"abstract":"<div><p>The adhesion strength of muck is a crucial factor influencing Earth Pressure Balance (EPB) shield clogging, but this perspective overlooks the role of muck’s shear strength. Therefore, it is crucial to comprehensively evaluate the risk of shield clogging based on muck strength. Adhesion strength and triaxial tests were conducted on the moderately weathered mudstone muck using a rotary shear apparatus and a soil-shape-controlled triaxial device. This work explores the relationship between tangential adhesion strength (referred to as adhesion strength) and shear strength of moderately weathered mudstone muck. The adhesion strength and the shear strength exhibited similar variation patterns. As the consistency index increased, the adhesion strength of the muck gradually rose. The interfacial friction angle increased, while the interfacial adhesion force initially rose before declining. The adhesion and shear strengths of muck can be assessed by integrating the effects of stratigraphic stress. When the adhesion strength surpasses the shear strength, the shield faces a risk of muck adhesion. Building on this insight, a strength-based clogging risk assessment strategy for mechanized tunneling was proposed. Field tests demonstrated that the risk assessment strategy effectively evaluated the potential for shield clogging both before and after dispersant treatment, thereby ensuring the safety and efficiency of shield tunneling. Moreover, recognizing the influence of temperature, consolidation, and critical shear strength on the potential for shield clogging, the authors will continue to focus on these factors in future work.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"84 4","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-025-04198-y","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The adhesion strength of muck is a crucial factor influencing Earth Pressure Balance (EPB) shield clogging, but this perspective overlooks the role of muck’s shear strength. Therefore, it is crucial to comprehensively evaluate the risk of shield clogging based on muck strength. Adhesion strength and triaxial tests were conducted on the moderately weathered mudstone muck using a rotary shear apparatus and a soil-shape-controlled triaxial device. This work explores the relationship between tangential adhesion strength (referred to as adhesion strength) and shear strength of moderately weathered mudstone muck. The adhesion strength and the shear strength exhibited similar variation patterns. As the consistency index increased, the adhesion strength of the muck gradually rose. The interfacial friction angle increased, while the interfacial adhesion force initially rose before declining. The adhesion and shear strengths of muck can be assessed by integrating the effects of stratigraphic stress. When the adhesion strength surpasses the shear strength, the shield faces a risk of muck adhesion. Building on this insight, a strength-based clogging risk assessment strategy for mechanized tunneling was proposed. Field tests demonstrated that the risk assessment strategy effectively evaluated the potential for shield clogging both before and after dispersant treatment, thereby ensuring the safety and efficiency of shield tunneling. Moreover, recognizing the influence of temperature, consolidation, and critical shear strength on the potential for shield clogging, the authors will continue to focus on these factors in future work.
期刊介绍:
Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces:
• the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations;
• the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change;
• the assessment of the mechanical and hydrological behaviour of soil and rock masses;
• the prediction of changes to the above properties with time;
• the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.