Physical entanglement improves the anti-adsorption and super-lubricity properties of polyacrylamide-based hydrogels for biomedical applications

IF 23.2 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Junyu Wang, Yan Xu, Shenglin Li, Luyao Tang, Xiaomin Li, Jian Song, Yuhong Liu
{"title":"Physical entanglement improves the anti-adsorption and super-lubricity properties of polyacrylamide-based hydrogels for biomedical applications","authors":"Junyu Wang,&nbsp;Yan Xu,&nbsp;Shenglin Li,&nbsp;Luyao Tang,&nbsp;Xiaomin Li,&nbsp;Jian Song,&nbsp;Yuhong Liu","doi":"10.1007/s42114-025-01267-4","DOIUrl":null,"url":null,"abstract":"<div><p>Though hydrogels have been widely employed in clinical applications, the bio-fouling problem and poor tribological performance have become one of the crucial limitations. In this study, we innovatively explore physically entangled hydrogels to achieve superior anti-adsorption and lubrication performance and prepare a soft and stretchable hydrogel catheter. The albumin adsorption mass is as low as 0.014 μg/mm<sup>2</sup>, a 97% reduction in protein adsorption mass compared to widely recognized zwitterionic materials. These advantages stem from the numerous physical entanglements in the hydrogel. First, the thicker hydration layer arising from elevated monomer density minimizes contact between proteins and polymer chains; second, binding the soft suspension chain to the hydrogel surface prevents the chains from bonding to proteins in solution. By utilizing physically entangled hydrogels with soft and tough characteristics, the fabricated hydrogel catheters with anti-protein adsorption possess superlubricating properties in serum (friction coefficient: 5.7 × 10<sup>−3</sup>). The physically entangled hydrogel demonstrates a promising approach that can enhance both the anti-adsorption and super-lubricity properties, with the aim of extending the service life of medical devices and improving patient comfort.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 2","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42114-025-01267-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-025-01267-4","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Though hydrogels have been widely employed in clinical applications, the bio-fouling problem and poor tribological performance have become one of the crucial limitations. In this study, we innovatively explore physically entangled hydrogels to achieve superior anti-adsorption and lubrication performance and prepare a soft and stretchable hydrogel catheter. The albumin adsorption mass is as low as 0.014 μg/mm2, a 97% reduction in protein adsorption mass compared to widely recognized zwitterionic materials. These advantages stem from the numerous physical entanglements in the hydrogel. First, the thicker hydration layer arising from elevated monomer density minimizes contact between proteins and polymer chains; second, binding the soft suspension chain to the hydrogel surface prevents the chains from bonding to proteins in solution. By utilizing physically entangled hydrogels with soft and tough characteristics, the fabricated hydrogel catheters with anti-protein adsorption possess superlubricating properties in serum (friction coefficient: 5.7 × 10−3). The physically entangled hydrogel demonstrates a promising approach that can enhance both the anti-adsorption and super-lubricity properties, with the aim of extending the service life of medical devices and improving patient comfort.

物理缠结改善了生物医学应用中聚丙烯酰胺基水凝胶的抗吸附和超润滑性能
尽管水凝胶在临床应用中得到了广泛的应用,但其生物污染问题和较差的摩擦学性能已成为其重要的限制之一。在本研究中,我们创新性地探索物理缠结的水凝胶,以获得优异的抗吸附和润滑性能,制备柔软可拉伸的水凝胶导管。白蛋白吸附质量低至0.014 μg/mm2,与广泛认可的两性离子材料相比,蛋白质吸附质量降低了97%。这些优点源于水凝胶中大量的物理缠结。首先,单体密度升高所产生的较厚水合层减少了蛋白质和聚合物链之间的接触;其次,将软悬浮链结合到水凝胶表面可以防止链与溶液中的蛋白质结合。利用具有柔软和坚韧特性的物理缠结水凝胶,制备的抗蛋白吸附水凝胶导管在血清中具有超润滑性能(摩擦系数为5.7 × 10−3)。物理纠缠的水凝胶展示了一种有前途的方法,可以增强抗吸附和超润滑性能,目的是延长医疗设备的使用寿命,提高患者的舒适度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.00
自引率
21.40%
发文量
185
期刊介绍: Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field. The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest. Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials. Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信