Point Cloud Structural Similarity-Based Underwater Sonar Loop Detection

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Donghwi Jung;Andres Pulido;Jane Shin;Seong-Woo Kim
{"title":"Point Cloud Structural Similarity-Based Underwater Sonar Loop Detection","authors":"Donghwi Jung;Andres Pulido;Jane Shin;Seong-Woo Kim","doi":"10.1109/LRA.2025.3547304","DOIUrl":null,"url":null,"abstract":"In this letter, we propose a point cloud structural similarity-based loop detection method for underwater Simultaneous Localization and Mapping using sonar sensors. Existing sonar-based loop detection approaches often rely on 2D projection and keypoint extraction, which can lead to data loss and poor performance in feature-scarce environments. Additionally, methods based on neural networks or Bag-of-Words require extensive preprocessing, such as model training or vocabulary creation, reducing adaptability to new environments. To address these challenges, our method directly utilizes 3D sonar point clouds without projection and computes point-wise structural feature maps based on geometry, normals, and curvature. By leveraging rotation-invariant similarity comparisons, the proposed approach eliminates the need for keypoint detection and ensures robust loop detection across diverse underwater terrains. We validate our method using two real-world datasets: the Antarctica dataset obtained from deep underwater and the Seaward dataset collected from rivers and lakes. Experimental results show that our method achieves the highest loop detection performance compared to existing keypoint-based and learning-based approaches while requiring no additional training or preprocessing.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 4","pages":"3859-3866"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10908830/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this letter, we propose a point cloud structural similarity-based loop detection method for underwater Simultaneous Localization and Mapping using sonar sensors. Existing sonar-based loop detection approaches often rely on 2D projection and keypoint extraction, which can lead to data loss and poor performance in feature-scarce environments. Additionally, methods based on neural networks or Bag-of-Words require extensive preprocessing, such as model training or vocabulary creation, reducing adaptability to new environments. To address these challenges, our method directly utilizes 3D sonar point clouds without projection and computes point-wise structural feature maps based on geometry, normals, and curvature. By leveraging rotation-invariant similarity comparisons, the proposed approach eliminates the need for keypoint detection and ensures robust loop detection across diverse underwater terrains. We validate our method using two real-world datasets: the Antarctica dataset obtained from deep underwater and the Seaward dataset collected from rivers and lakes. Experimental results show that our method achieves the highest loop detection performance compared to existing keypoint-based and learning-based approaches while requiring no additional training or preprocessing.
基于点云结构相似性的水下声纳环路探测
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信