One-pot bioconversion of fungal lipid to mycodiesel: a sustainable approach

IF 1.8 3区 生物学 Q4 MICROBIOLOGY
Helan Soundra Rani Michael, Prabhakaran Baskaran
{"title":"One-pot bioconversion of fungal lipid to mycodiesel: a sustainable approach","authors":"Helan Soundra Rani Michael,&nbsp;Prabhakaran Baskaran","doi":"10.1007/s10482-025-02072-1","DOIUrl":null,"url":null,"abstract":"<div><p>The conversion of filamentous fungus-based feedstock into Biodiesel holds potential as a sustainable and eco-conscious method for producing alternative liquid fuels. This study examined the comparison of individual Fatty Acid Methyl Esters (FAME) of <i>Aspergillus niger</i> and <i>Curvularia lunata</i> with the consortium of both filamentous fungal cocktail Fatty acid methyl esters (cFAME), following a transesterification process that turned the fungal lipids into myco-based biodiesel productions. cFAME weighs 23.89 g and accumulates to 20.43 g of lipid yield, with 86% of cellular lipids; in contrast, <i>A. niger</i> weighs 12.65 g and pile up 9.5 g of lipid yield, with 75% of cellular lipid, also <i>C. lunata</i> exhibits 8.35 g of dry weight with 4.89 g of lipid concentration, with 59% of cellular lipids. <i>A. niger</i> was known to contain C16–C18 saturated and unsaturated fatty acids possess LAME (C18:2), OAFA (C18:1), and PAME (C16:0) were shown in high percentages accounted for 86.6% in <i>A. niger</i>. The results showed that PUFA was predominant over MUFA and SFA. <i>C. lunata</i> chiefly produces C16 and C18 fatty acids, which are considered favorable for combustion properties with oleic acid (C18:1), linoleic acid (C18:2), palmitic acid (C16:0), and stearic acid (C18:0), on the comparison. However, the FAME profile of <i>C. lunata</i> occupies only 39.07% of the biodiesel quality. Pentadecanoic acid, palmitic acid, palmitoleic acid, Oleic acid, Linolenic acid, Linoleic acis, and Hexanoic acid with the carbon range of C6:0 – C18:3 were observed in cFAME. Based on the biodiesel yield, cFAME scored 20.55%, whereas <i>A. niger</i> with 11.05 and <i>C.lunata</i> 2.45%, respectively. The presence of methyl esters containing various long-chain fatty acids indicates very effective biodiesel assets, as confirmed by GC–MS analysis, which evidenced ignition efficiency, among others. cFAMEs were impacted by high ignition efficiency with &gt; 4 min. Consortium strategies seize attention in different dimensions and have been confirmed by their upregulation in their fatty acid profiles; in the future, the combination of high lipid holders among the fungal kingdom can be an alternative in myco-based biodiesel production.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":50746,"journal":{"name":"Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology","volume":"118 4","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10482-025-02072-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The conversion of filamentous fungus-based feedstock into Biodiesel holds potential as a sustainable and eco-conscious method for producing alternative liquid fuels. This study examined the comparison of individual Fatty Acid Methyl Esters (FAME) of Aspergillus niger and Curvularia lunata with the consortium of both filamentous fungal cocktail Fatty acid methyl esters (cFAME), following a transesterification process that turned the fungal lipids into myco-based biodiesel productions. cFAME weighs 23.89 g and accumulates to 20.43 g of lipid yield, with 86% of cellular lipids; in contrast, A. niger weighs 12.65 g and pile up 9.5 g of lipid yield, with 75% of cellular lipid, also C. lunata exhibits 8.35 g of dry weight with 4.89 g of lipid concentration, with 59% of cellular lipids. A. niger was known to contain C16–C18 saturated and unsaturated fatty acids possess LAME (C18:2), OAFA (C18:1), and PAME (C16:0) were shown in high percentages accounted for 86.6% in A. niger. The results showed that PUFA was predominant over MUFA and SFA. C. lunata chiefly produces C16 and C18 fatty acids, which are considered favorable for combustion properties with oleic acid (C18:1), linoleic acid (C18:2), palmitic acid (C16:0), and stearic acid (C18:0), on the comparison. However, the FAME profile of C. lunata occupies only 39.07% of the biodiesel quality. Pentadecanoic acid, palmitic acid, palmitoleic acid, Oleic acid, Linolenic acid, Linoleic acis, and Hexanoic acid with the carbon range of C6:0 – C18:3 were observed in cFAME. Based on the biodiesel yield, cFAME scored 20.55%, whereas A. niger with 11.05 and C.lunata 2.45%, respectively. The presence of methyl esters containing various long-chain fatty acids indicates very effective biodiesel assets, as confirmed by GC–MS analysis, which evidenced ignition efficiency, among others. cFAMEs were impacted by high ignition efficiency with > 4 min. Consortium strategies seize attention in different dimensions and have been confirmed by their upregulation in their fatty acid profiles; in the future, the combination of high lipid holders among the fungal kingdom can be an alternative in myco-based biodiesel production.

Graphical Abstract

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
11.50%
发文量
104
审稿时长
3 months
期刊介绍: Antonie van Leeuwenhoek publishes papers on fundamental and applied aspects of microbiology. Topics of particular interest include: taxonomy, structure & development; biochemistry & molecular biology; physiology & metabolic studies; genetics; ecological studies; especially molecular ecology; marine microbiology; medical microbiology; molecular biological aspects of microbial pathogenesis and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信