{"title":"Colorimetric and fluorescent dual-modality assay for cell-free mitochondrial DNA copy number in saliva","authors":"Jiaxu Wang, Zhengrong Lu, Zhanmin Liu, Qiming Chen","doi":"10.1016/j.ab.2025.115840","DOIUrl":null,"url":null,"abstract":"<div><div>Copy number of cell-free mitochondrial DNA (cf-mtDNA) has garnered significant attention as a biomarker for studying and diagnosing various diseases. However, Quantitative Real-time PCR (qPCR) and Droplet Digital PCR (ddPCR) assays for cf-mtDNA copy number detection require expensive equipment and high experiment conditions. In this study, a colorimetric and fluorescent dual-modality assay was developed for quantitative detection of cf-mtDNA copy number. With G-quadruplex (G4) sequence modified primers, the assay could quantitatively detect cf-mtDNA with spectrophotometry, RGB (Red, Green, Blue) visual method and fluorescence method, which made the application scenarios more diverse. The specificity of dual-mode method was better, and the detection limits of spectrophotometry, RGB visual method and fluorescence method were as low as 1.45 × 10<sup>−1</sup> copies/μL, 1.65 copies/μL and 1.58 × 10<sup>−1</sup> copies/μL, respectively. Compared with qPCR and ddPCR assays developed in previous studies, the dual-modality assay in this study had a lower detection limit. It was also independent of expensive qPCR and ddPCR equipment and the detection cost was low. Therefore, the colorimetric and fluorescent dual-modality assay represent a label-free and sensitive approach for assessing cf-mtDNA levels, offering promising implications for biomedical research and clinical diagnostics.</div></div>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":"702 ","pages":"Article 115840"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003269725000788","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Copy number of cell-free mitochondrial DNA (cf-mtDNA) has garnered significant attention as a biomarker for studying and diagnosing various diseases. However, Quantitative Real-time PCR (qPCR) and Droplet Digital PCR (ddPCR) assays for cf-mtDNA copy number detection require expensive equipment and high experiment conditions. In this study, a colorimetric and fluorescent dual-modality assay was developed for quantitative detection of cf-mtDNA copy number. With G-quadruplex (G4) sequence modified primers, the assay could quantitatively detect cf-mtDNA with spectrophotometry, RGB (Red, Green, Blue) visual method and fluorescence method, which made the application scenarios more diverse. The specificity of dual-mode method was better, and the detection limits of spectrophotometry, RGB visual method and fluorescence method were as low as 1.45 × 10−1 copies/μL, 1.65 copies/μL and 1.58 × 10−1 copies/μL, respectively. Compared with qPCR and ddPCR assays developed in previous studies, the dual-modality assay in this study had a lower detection limit. It was also independent of expensive qPCR and ddPCR equipment and the detection cost was low. Therefore, the colorimetric and fluorescent dual-modality assay represent a label-free and sensitive approach for assessing cf-mtDNA levels, offering promising implications for biomedical research and clinical diagnostics.
期刊介绍:
The journal''s title Analytical Biochemistry: Methods in the Biological Sciences declares its broad scope: methods for the basic biological sciences that include biochemistry, molecular genetics, cell biology, proteomics, immunology, bioinformatics and wherever the frontiers of research take the field.
The emphasis is on methods from the strictly analytical to the more preparative that would include novel approaches to protein purification as well as improvements in cell and organ culture. The actual techniques are equally inclusive ranging from aptamers to zymology.
The journal has been particularly active in:
-Analytical techniques for biological molecules-
Aptamer selection and utilization-
Biosensors-
Chromatography-
Cloning, sequencing and mutagenesis-
Electrochemical methods-
Electrophoresis-
Enzyme characterization methods-
Immunological approaches-
Mass spectrometry of proteins and nucleic acids-
Metabolomics-
Nano level techniques-
Optical spectroscopy in all its forms.
The journal is reluctant to include most drug and strictly clinical studies as there are more suitable publication platforms for these types of papers.