{"title":"Phase-separation induced dislocation-network cellular structures in Ti-Zr-Nb-Mo-Ta high-entropy alloy processed by laser powder bed fusion","authors":"Han Chen , Daisuke Egusa , Zehao Li , Taisuke Sasaki , Ryosuke Ozasa , Takuya Ishimoto , Masayuki Okugawa , Yuichiro Koizumi , Takayoshi Nakano , Eiji Abe","doi":"10.1016/j.addma.2025.104737","DOIUrl":null,"url":null,"abstract":"<div><div>Hierarchical structures, such as cellular structures, elemental segregations, and dislocation-network, are often proposed to enhance the mechanical properties of high-entropy alloys (HEAs) fabricated via additive manufacturing (AM). The formation of cellular structures is often attributed to elemental segregation during the solidification process or thermal strain resulting from the AM process. Here, we present a novel cellular structure where phase-separation and dislocation-network coupled in Ti-Zr-Nb-Mo-Ta HEA processed by laser powder bed fusion (L-PBF). Electron microscopy observations and X-ray diffraction (XRD) analyses show that this unique cellular structure consists of Zr-rich and Ta-rich body-center cubic (BCC) phases as the cell-wall and the cell-core, respectively, with their lattice constant difference of about 1 %. Moreover, a higher density of dislocations forming distinct networks is detected within this cellular structure, whose density reached 8 × 10<sup>14</sup> m<sup>−2</sup>. Machine learning analysis reveals that the dislocations preferentially occur on the Zr-rich BCC side, thus accommodating the strains significant around the boundaries between the two BCC phases. With the aid of thermodynamic simulations, we propose a formation mechanism of the present cellular structure, which is governed by the elemental partitioning behavior of Zr and Ta during a solid-state phase separation under rapid cooling. Boundaries with this phase separation are introduced as semi-coherent interfaces with misfit dislocations, introducing a high-density dislocation in the present material. This novel cellular structure can significantly enhance the strength of AM HEAs, providing valuable insights for developing high-performance AM metals through the design of hierarchical microstructures.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"102 ","pages":"Article 104737"},"PeriodicalIF":10.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860425001010","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Hierarchical structures, such as cellular structures, elemental segregations, and dislocation-network, are often proposed to enhance the mechanical properties of high-entropy alloys (HEAs) fabricated via additive manufacturing (AM). The formation of cellular structures is often attributed to elemental segregation during the solidification process or thermal strain resulting from the AM process. Here, we present a novel cellular structure where phase-separation and dislocation-network coupled in Ti-Zr-Nb-Mo-Ta HEA processed by laser powder bed fusion (L-PBF). Electron microscopy observations and X-ray diffraction (XRD) analyses show that this unique cellular structure consists of Zr-rich and Ta-rich body-center cubic (BCC) phases as the cell-wall and the cell-core, respectively, with their lattice constant difference of about 1 %. Moreover, a higher density of dislocations forming distinct networks is detected within this cellular structure, whose density reached 8 × 1014 m−2. Machine learning analysis reveals that the dislocations preferentially occur on the Zr-rich BCC side, thus accommodating the strains significant around the boundaries between the two BCC phases. With the aid of thermodynamic simulations, we propose a formation mechanism of the present cellular structure, which is governed by the elemental partitioning behavior of Zr and Ta during a solid-state phase separation under rapid cooling. Boundaries with this phase separation are introduced as semi-coherent interfaces with misfit dislocations, introducing a high-density dislocation in the present material. This novel cellular structure can significantly enhance the strength of AM HEAs, providing valuable insights for developing high-performance AM metals through the design of hierarchical microstructures.
期刊介绍:
Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects.
The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.