The algebra D(W) via strong Darboux transformations

IF 1.2 3区 数学 Q1 MATHEMATICS
Ignacio Bono Parisi, Ines Pacharoni
{"title":"The algebra D(W) via strong Darboux transformations","authors":"Ignacio Bono Parisi,&nbsp;Ines Pacharoni","doi":"10.1016/j.jmaa.2025.129443","DOIUrl":null,"url":null,"abstract":"<div><div>The Matrix Bochner Problem aims to classify weight matrices <em>W</em> such that the algebra <span><math><mi>D</mi><mo>(</mo><mi>W</mi><mo>)</mo></math></span>, of all differential operators that have a sequence of matrix-valued orthogonal polynomials for <em>W</em> as eigenfunctions, contains a second-order differential operator. In <span><span>[5]</span></span> it is proven that, under certain assumptions, the solutions to the Matrix Bochner Problem can be obtained through a noncommutative bispectral Darboux transformation of some classical scalar weights. The main aim of this paper is to introduce the concept of strong Darboux transformation among weight matrices and explore the relationship between the algebras <span><math><mi>D</mi><mo>(</mo><mi>W</mi><mo>)</mo></math></span> and <span><math><mi>D</mi><mo>(</mo><mover><mrow><mi>W</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></math></span> when <span><math><mover><mrow><mi>W</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> is a strong Darboux transformation of <em>W</em>. Starting from a direct sum of classical scalar weights <span><math><mover><mrow><mi>W</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span>, and leveraging our complete knowledge of the algebra of <span><math><mi>D</mi><mo>(</mo><mover><mrow><mi>W</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>)</mo></math></span>, we can easily determine the algebra <span><math><mi>D</mi><mo>(</mo><mi>W</mi><mo>)</mo></math></span> of a weight <em>W</em> that is a strong Darboux transformation of <span><math><mover><mrow><mi>W</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 1","pages":"Article 129443"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25002240","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Matrix Bochner Problem aims to classify weight matrices W such that the algebra D(W), of all differential operators that have a sequence of matrix-valued orthogonal polynomials for W as eigenfunctions, contains a second-order differential operator. In [5] it is proven that, under certain assumptions, the solutions to the Matrix Bochner Problem can be obtained through a noncommutative bispectral Darboux transformation of some classical scalar weights. The main aim of this paper is to introduce the concept of strong Darboux transformation among weight matrices and explore the relationship between the algebras D(W) and D(W˜) when W˜ is a strong Darboux transformation of W. Starting from a direct sum of classical scalar weights W˜, and leveraging our complete knowledge of the algebra of D(W˜), we can easily determine the algebra D(W) of a weight W that is a strong Darboux transformation of W˜.
通过强达布变换的代数 D(W)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信