Waste to waste treatment: Efficient upcycling of jarosite as a metal source and waste PET as a sustainable linker to synthesize iron-based MOF for wastewater treatment

IF 5.5 3区 工程技术 Q1 ENGINEERING, CHEMICAL
Pushpendra Kushwaha , Madhu Agarwal , Akhilendra Bhushan Gupta
{"title":"Waste to waste treatment: Efficient upcycling of jarosite as a metal source and waste PET as a sustainable linker to synthesize iron-based MOF for wastewater treatment","authors":"Pushpendra Kushwaha ,&nbsp;Madhu Agarwal ,&nbsp;Akhilendra Bhushan Gupta","doi":"10.1016/j.jtice.2025.106095","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>A significant excess of waste sludge from the metal industry and plastic waste from discarded bottles creates the need for meaningful disposal and sustainable utilisation. Therefore, a sustainable solution has been considered to treat waste streams of textile and pharmaceuticals.</div></div><div><h3>Method</h3><div>An iron-based metal-organic framework (Fe-BDC MOF) is synthesised from metals and organic linkers. The synthesised iron-based MOFs efficiently treated dyes and antibiotics in industrial waste streams. Recently, antibiotic and dye removal from pharmaceutical and textile industry wastewater has been urgent from the viewpoint of human health and sustainable environment development. Another Fe-BDC MOF was prepared using commercially available terephthalic acid (Fe-BDC) for comparative analysis.</div></div><div><h3>Finding</h3><div>Developed MOFs were characterised using FTIR, FESEM-EDS, TGA, XRD, XPS, and BET techniques. Additionally, experiments were conducted to assess the adsorption of Norfloxacin (NR) and Methylene blue (MB) dye using developed MOFs. Under optimised conditions [contact time 20 min (NR), 30 min (MB), initial concentration 25 mg/L, temperature 30 °C, dose 0.3 g/L (NR), 1 g/L (MB) and pH (5.5)], according to Langmuir isotherm the developed Fe-BDC MOF shows maximum adsorption capacities of 1123.60 and 256.41 mg/g of NR and MB, respectively. The removal of NR and MB was well fitted with the Freundlich isotherm and pseudo 2nd order model. The outcomes of the thermodynamic study reveal that adsorption is exothermic and spontaneous. The synthesis of the Fe-BDC MOF with PET-derived BDC presents a promising method for addressing environmental PET waste while facilitating the efficient removal of NR and MB from wastewater.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"171 ","pages":"Article 106095"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107025001488","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

A significant excess of waste sludge from the metal industry and plastic waste from discarded bottles creates the need for meaningful disposal and sustainable utilisation. Therefore, a sustainable solution has been considered to treat waste streams of textile and pharmaceuticals.

Method

An iron-based metal-organic framework (Fe-BDC MOF) is synthesised from metals and organic linkers. The synthesised iron-based MOFs efficiently treated dyes and antibiotics in industrial waste streams. Recently, antibiotic and dye removal from pharmaceutical and textile industry wastewater has been urgent from the viewpoint of human health and sustainable environment development. Another Fe-BDC MOF was prepared using commercially available terephthalic acid (Fe-BDC) for comparative analysis.

Finding

Developed MOFs were characterised using FTIR, FESEM-EDS, TGA, XRD, XPS, and BET techniques. Additionally, experiments were conducted to assess the adsorption of Norfloxacin (NR) and Methylene blue (MB) dye using developed MOFs. Under optimised conditions [contact time 20 min (NR), 30 min (MB), initial concentration 25 mg/L, temperature 30 °C, dose 0.3 g/L (NR), 1 g/L (MB) and pH (5.5)], according to Langmuir isotherm the developed Fe-BDC MOF shows maximum adsorption capacities of 1123.60 and 256.41 mg/g of NR and MB, respectively. The removal of NR and MB was well fitted with the Freundlich isotherm and pseudo 2nd order model. The outcomes of the thermodynamic study reveal that adsorption is exothermic and spontaneous. The synthesis of the Fe-BDC MOF with PET-derived BDC presents a promising method for addressing environmental PET waste while facilitating the efficient removal of NR and MB from wastewater.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
14.00%
发文量
362
审稿时长
35 days
期刊介绍: Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信