{"title":"Molecular crosstalk and potential causal mechanisms of rheumatoid arthritis and sarcopenia co-morbidity: A gene integration analysis","authors":"Qiang Ren , Kaixi Ding , Wei Jiang , Wen Zhu , Yongxiang Gao","doi":"10.1016/j.exger.2025.112729","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>Rheumatoid arthritis (RA) promotes the onset and progression of sarcopenia, yet mechanisms of co-morbidity between RA and sarcopenia are under-explored. Therefore, this study integrated Gene Expression Omnibus (GEO) and Genome-wide association studies (GWAS) data to comprehensively identify shared genes, associated mechanisms, and biological pathways in RA and sarcopenia.</div></div><div><h3>Methods</h3><div>Utilizing two GEO datasets—GSE226151, which includes 60 RNA-seq samples of skeletal muscle from healthy aged, pre-sarcopenia, and sarcopenia individuals, and GSE55235, with 20 RNA-seq samples of synovial tissue from healthy and RA joints—we performed differentially expressed genes analysis, weighted gene co-expression network analysis to identify crosstalk genes in RA and sarcopenia, and enrichment analysis for these genes. Using relevant GWAS datasets, SMR analyses and cis-eQTL analyses were performed. We further validated and identified key crosstalk genes and explored potential causal associations between key crosstalk genes and RA and sarcopenia-related traits.</div></div><div><h3>Results</h3><div>We identified 25 crosstalk genes shared between RA and sarcopenia, which are involved in immune-inflammatory response pathways, including neutrophil extracellular trap formation and Fc gamma receptor-mediated phagocytosis. SMR analysis further identified six core crosstalk genes: NCF1, FCGR2A, FCGR3A, SORL1, FCGR3B, and ITGAX (<em>P</em><sub><em>SMR</em></sub> < 0.05). <em>cis</em>-eQTL analysis showed that FCGR2A might have a negative causal association with appendicular lean mass, whole body fat-free mass, and a positive causal association with RA (<em>P</em> < 0.05).</div></div><div><h3>Conclusion</h3><div>Overall, this study is the first to reveal the molecular crosstalk between RA and sarcopenia, identifying 25 shared genes and key immune-inflammatory response-related pathways. Further SMR and cis-eQTL analyses were conducted to validate six core genes, with FCGR2A emerging as a potential drug target for RA-associated sarcopenia. These findings provide new insights into the comorbid mechanisms of RA and sarcopenia, offering potential therapeutic targets for both conditions.</div></div>","PeriodicalId":94003,"journal":{"name":"Experimental gerontology","volume":"203 ","pages":"Article 112729"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental gerontology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0531556525000580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Rheumatoid arthritis (RA) promotes the onset and progression of sarcopenia, yet mechanisms of co-morbidity between RA and sarcopenia are under-explored. Therefore, this study integrated Gene Expression Omnibus (GEO) and Genome-wide association studies (GWAS) data to comprehensively identify shared genes, associated mechanisms, and biological pathways in RA and sarcopenia.
Methods
Utilizing two GEO datasets—GSE226151, which includes 60 RNA-seq samples of skeletal muscle from healthy aged, pre-sarcopenia, and sarcopenia individuals, and GSE55235, with 20 RNA-seq samples of synovial tissue from healthy and RA joints—we performed differentially expressed genes analysis, weighted gene co-expression network analysis to identify crosstalk genes in RA and sarcopenia, and enrichment analysis for these genes. Using relevant GWAS datasets, SMR analyses and cis-eQTL analyses were performed. We further validated and identified key crosstalk genes and explored potential causal associations between key crosstalk genes and RA and sarcopenia-related traits.
Results
We identified 25 crosstalk genes shared between RA and sarcopenia, which are involved in immune-inflammatory response pathways, including neutrophil extracellular trap formation and Fc gamma receptor-mediated phagocytosis. SMR analysis further identified six core crosstalk genes: NCF1, FCGR2A, FCGR3A, SORL1, FCGR3B, and ITGAX (PSMR < 0.05). cis-eQTL analysis showed that FCGR2A might have a negative causal association with appendicular lean mass, whole body fat-free mass, and a positive causal association with RA (P < 0.05).
Conclusion
Overall, this study is the first to reveal the molecular crosstalk between RA and sarcopenia, identifying 25 shared genes and key immune-inflammatory response-related pathways. Further SMR and cis-eQTL analyses were conducted to validate six core genes, with FCGR2A emerging as a potential drug target for RA-associated sarcopenia. These findings provide new insights into the comorbid mechanisms of RA and sarcopenia, offering potential therapeutic targets for both conditions.