{"title":"Machine Learning-Based localization of the epileptogenic zone using High-Frequency oscillations from SEEG: A Real-World approach","authors":"Aswin Raghu , C.P. Nidhin , V.S. Sivabharathi , Pranav Rakesh Menon , Priyalakshmi Sheela , Remya Ajai , T.R. Krishnaprasad , Anand Kumar , Arjun Ramakrishnan , Siby Gopinath , Harilal Parasuram","doi":"10.1016/j.jocn.2025.111177","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>Localizing the epileptogenic zone (EZ) using Stereo EEG (SEEG) is often challenging through manual analysis. Even methods based on signal analysis have limitations in identifying the EZ, particularly in patients with neocortical epilepsy.</div></div><div><h3>Methods</h3><div>We developed machine learning (ML) methods that utilize HFO from SEEG recordings to train models to localize the EZ. We used data from 52 epilepsy patients (37 seizure free and 15 non-seizure free) who had epilepsy surgeries at our centre and were followed up for an average of 27.4 months. A total of 27 features encompassing statistical, linear, and nonlinear parameters were computed for HFOs from EZ and non-EZ brain areas. Performances of different classification algorithms were compared.</div></div><div><h3>Results</h3><div>In cases of mesial temporal lobe epilepsy, we achieved a cross-validation accuracy of 85.4% with the Extra-Trees classifier, 85.3% with the Random-Forest, and 82.1% with the Voting-classifier, using training data from ripples and fast ripples. For neocortical epilepsy patients, the extra trees classifier yielded an accuracy of 84.2%, while the random forest and voting classifiers attained accuracies of 84% and 80%, respectively.</div></div><div><h3>Conclusion</h3><div>In our approach, we employed a more realistic strategy by training the ML models at the SEEG contact level. This ensured that HFO data from a specific contact used for training the model was excluded from testing, thereby minimizing bias. This approach provides a more practical and applicable method for real-world use. Our findings indicate that the ML model-based localization of the EZ could function as an independent approach, potentially reducing the bias associated with visual analysis of SEEG.</div></div>","PeriodicalId":15487,"journal":{"name":"Journal of Clinical Neuroscience","volume":"135 ","pages":"Article 111177"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967586825001493","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Localizing the epileptogenic zone (EZ) using Stereo EEG (SEEG) is often challenging through manual analysis. Even methods based on signal analysis have limitations in identifying the EZ, particularly in patients with neocortical epilepsy.
Methods
We developed machine learning (ML) methods that utilize HFO from SEEG recordings to train models to localize the EZ. We used data from 52 epilepsy patients (37 seizure free and 15 non-seizure free) who had epilepsy surgeries at our centre and were followed up for an average of 27.4 months. A total of 27 features encompassing statistical, linear, and nonlinear parameters were computed for HFOs from EZ and non-EZ brain areas. Performances of different classification algorithms were compared.
Results
In cases of mesial temporal lobe epilepsy, we achieved a cross-validation accuracy of 85.4% with the Extra-Trees classifier, 85.3% with the Random-Forest, and 82.1% with the Voting-classifier, using training data from ripples and fast ripples. For neocortical epilepsy patients, the extra trees classifier yielded an accuracy of 84.2%, while the random forest and voting classifiers attained accuracies of 84% and 80%, respectively.
Conclusion
In our approach, we employed a more realistic strategy by training the ML models at the SEEG contact level. This ensured that HFO data from a specific contact used for training the model was excluded from testing, thereby minimizing bias. This approach provides a more practical and applicable method for real-world use. Our findings indicate that the ML model-based localization of the EZ could function as an independent approach, potentially reducing the bias associated with visual analysis of SEEG.
期刊介绍:
This International journal, Journal of Clinical Neuroscience, publishes articles on clinical neurosurgery and neurology and the related neurosciences such as neuro-pathology, neuro-radiology, neuro-ophthalmology and neuro-physiology.
The journal has a broad International perspective, and emphasises the advances occurring in Asia, the Pacific Rim region, Europe and North America. The Journal acts as a focus for publication of major clinical and laboratory research, as well as publishing solicited manuscripts on specific subjects from experts, case reports and other information of interest to clinicians working in the clinical neurosciences.